ACE: A Versatile Contrastive Learning Framework for Single-cell Mosaic Integration.

IF 7.9
Xuhua Yan, Jinmiao Chen, Ruiqing Zheng, Min Li
{"title":"ACE: A Versatile Contrastive Learning Framework for Single-cell Mosaic Integration.","authors":"Xuhua Yan, Jinmiao Chen, Ruiqing Zheng, Min Li","doi":"10.1093/gpbjnl/qzaf062","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of single-cell multi-omics datasets is critical for deciphering cellular heterogeneities. Mosaic integration, the most general integration task, poses a greater challenge regarding disparity in modality abundance across datasets. Here, we present Align and CompletE (ACE), a mosaic integration framework that assembles two types of strategies to handle this problem: modality alignment-based strategy (ACE-align) and regression-based strategy (ACE-spec). ACE-align utilizes a novel contrastive learning objective for explicit modality alignment to uncover the shared latent representations behind modalities. ACE-spec combines the modality alignment results and modality-specific representations to construct complete multi-omics representations for all datasets. Extensive experiments across various mosaic integration scenarios demonstrate the superiority of ACE's two strategies over existing methods. Application of ACE-spec to bi-modal and tri-modal integration scenarios showcases that ACE-spec is able to enhance the representation of cellular heterogeneities for datasets with incomplete modalities. The source code of ACE can be accessed at https://github.com/CSUBioGroup/ACE-main.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of single-cell multi-omics datasets is critical for deciphering cellular heterogeneities. Mosaic integration, the most general integration task, poses a greater challenge regarding disparity in modality abundance across datasets. Here, we present Align and CompletE (ACE), a mosaic integration framework that assembles two types of strategies to handle this problem: modality alignment-based strategy (ACE-align) and regression-based strategy (ACE-spec). ACE-align utilizes a novel contrastive learning objective for explicit modality alignment to uncover the shared latent representations behind modalities. ACE-spec combines the modality alignment results and modality-specific representations to construct complete multi-omics representations for all datasets. Extensive experiments across various mosaic integration scenarios demonstrate the superiority of ACE's two strategies over existing methods. Application of ACE-spec to bi-modal and tri-modal integration scenarios showcases that ACE-spec is able to enhance the representation of cellular heterogeneities for datasets with incomplete modalities. The source code of ACE can be accessed at https://github.com/CSUBioGroup/ACE-main.

ACE:单细胞镶嵌整合的通用对比学习框架。
单细胞多组学数据集的整合是破解细胞异质性的关键。马赛克集成是最常见的集成任务,但由于数据集之间模态丰度的差异,它提出了更大的挑战。在这里,我们提出了对齐和完成(ACE),一个马赛克集成框架,它组装了两种类型的策略来处理这个问题:基于模态对齐的策略(ACE- Align)和基于回归的策略(ACE-spec)。ACE-align利用一种新的对比学习目标进行显式模态对齐,以揭示模态背后的共同潜在表征。ACE-spec结合了模态对齐结果和模态特定表示,为所有数据集构建完整的多组学表示。在各种马赛克集成场景中进行的大量实验表明,ACE的两种策略优于现有方法。ACE-spec在双模态和三模态集成场景中的应用表明,ACE-spec能够增强具有不完整模态的数据集的细胞异质性的表示。ACE的源代码可以在https://github.com/CSUBioGroup/ACE-main上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信