Non-commutative L p spaces and Grassmann stochastic analysis.

IF 1.6 1区 数学 Q2 STATISTICS & PROBABILITY
Probability Theory and Related Fields Pub Date : 2025-01-01 Epub Date: 2025-05-25 DOI:10.1007/s00440-025-01379-4
Francesco De Vecchi, Luca Fresta, Maria Gordina, Massimiliano Gubinelli
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Non-commutative <ns0:math><ns0:msup><ns0:mi>L</ns0:mi> <ns0:mi>p</ns0:mi></ns0:msup> </ns0:math> spaces and Grassmann stochastic analysis.","authors":"Francesco De Vecchi, Luca Fresta, Maria Gordina, Massimiliano Gubinelli","doi":"10.1007/s00440-025-01379-4","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a theory of non-commutative <math><msup><mi>L</mi> <mi>p</mi></msup> </math> spaces suitable for non-commutative probability in a non-tracial setting and use it to develop stochastic analysis of Grassmann-valued processes, including martingale inequalities, stochastic integrals with respect to <i>Itô-Grassmann</i> processes, Girsanov's formula and a weak formulation of Grassmann SDEs. We apply this new setting to the construction of several unbounded random variables including a Grassmann analog of the  <math><msubsup><mi>Φ</mi> <mn>2</mn> <mn>4</mn></msubsup> </math> Euclidean QFT in a bounded region and weak solution to singular SPDEs in the spirit of the early work of Jona-Lasinio and Mitter on the stochastic quantisation of  <math><msubsup><mi>Φ</mi> <mn>2</mn> <mn>4</mn></msubsup> </math> .</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"192 3-4","pages":"949-1029"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-025-01379-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a theory of non-commutative L p spaces suitable for non-commutative probability in a non-tracial setting and use it to develop stochastic analysis of Grassmann-valued processes, including martingale inequalities, stochastic integrals with respect to Itô-Grassmann processes, Girsanov's formula and a weak formulation of Grassmann SDEs. We apply this new setting to the construction of several unbounded random variables including a Grassmann analog of the  Φ 2 4 Euclidean QFT in a bounded region and weak solution to singular SPDEs in the spirit of the early work of Jona-Lasinio and Mitter on the stochastic quantisation of  Φ 2 4 .

非交换lp空间与Grassmann随机分析。
我们引入了一种适用于非迹集非交换概率的非交换L - p空间理论,并利用它来发展Grassmann值过程的随机分析,包括鞅不等式、Itô-Grassmann过程的随机积分、Girsanov公式和Grassmann SDEs的弱公式。我们将这个新设置应用于几个无界随机变量的构造,包括有界区域中Φ 24欧几里得QFT的Grassmann模拟和奇异spde的弱解,这是Jona-Lasinio和Mitter早期关于Φ 24随机量化的工作的精神。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信