{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:msup><ns0:mi>C</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msup> </ns0:math> regularity in semilinear free boundary problems.","authors":"Daniel Restrepo, Xavier Ros-Oton","doi":"10.1007/s00208-025-03135-4","DOIUrl":null,"url":null,"abstract":"<p><p>We study the higher regularity of solutions and free boundaries in the Alt-Phillips problem <math><mrow><mi>Δ</mi> <mi>u</mi> <mo>=</mo> <msup><mi>u</mi> <mrow><mi>γ</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <mo>,</mo></mrow> </math> with <math><mrow><mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>.</mo></mrow> </math> Our main results imply that, once free boundaries are <math> <mrow><msup><mi>C</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>α</mi></mrow> </msup> <mo>,</mo></mrow> </math> then they are <math> <mrow><msup><mi>C</mi> <mi>∞</mi></msup> <mo>.</mo></mrow> </math> In addition <math><mrow><mi>u</mi> <mo>/</mo> <msup><mi>d</mi> <mfrac><mn>2</mn> <mrow><mn>2</mn> <mo>-</mo> <mi>γ</mi></mrow> </mfrac> </msup> </mrow> </math> and <math><msup><mi>u</mi> <mfrac><mrow><mn>2</mn> <mo>-</mo> <mi>γ</mi></mrow> <mn>2</mn></mfrac> </msup> </math> are <math><msup><mi>C</mi> <mi>∞</mi></msup> </math> too. In order to achieve this, we need to establish fine regularity estimates for solutions of linear equations with boundary-singular Hardy potentials <math><mrow><mo>-</mo> <mi>Δ</mi> <mi>v</mi> <mo>=</mo> <mi>κ</mi> <mi>v</mi> <mo>/</mo> <msup><mi>d</mi> <mn>2</mn></msup> </mrow> </math> in <math><mrow><mi>Ω</mi> <mo>,</mo></mrow> </math> where <i>d</i> is the distance to the boundary and <math><mrow><mi>κ</mi> <mo>≤</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> <mo>.</mo></mrow> </math> Interestingly, we need to include even the critical constant <math><mrow><mi>κ</mi> <mo>=</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> <mo>,</mo></mrow> </math> which corresponds to <math><mrow><mi>γ</mi> <mo>=</mo> <mfrac><mn>2</mn> <mn>3</mn></mfrac> <mo>.</mo></mrow></math></p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 3","pages":"3397-3446"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03135-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the higher regularity of solutions and free boundaries in the Alt-Phillips problem with Our main results imply that, once free boundaries are then they are In addition and are too. In order to achieve this, we need to establish fine regularity estimates for solutions of linear equations with boundary-singular Hardy potentials in where d is the distance to the boundary and Interestingly, we need to include even the critical constant which corresponds to
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.