C regularity in semilinear free boundary problems.

IF 1.4 2区 数学 Q1 MATHEMATICS
Mathematische Annalen Pub Date : 2025-01-01 Epub Date: 2025-05-07 DOI:10.1007/s00208-025-03135-4
Daniel Restrepo, Xavier Ros-Oton
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:msup><ns0:mi>C</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msup> </ns0:math> regularity in semilinear free boundary problems.","authors":"Daniel Restrepo, Xavier Ros-Oton","doi":"10.1007/s00208-025-03135-4","DOIUrl":null,"url":null,"abstract":"<p><p>We study the higher regularity of solutions and free boundaries in the Alt-Phillips problem <math><mrow><mi>Δ</mi> <mi>u</mi> <mo>=</mo> <msup><mi>u</mi> <mrow><mi>γ</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <mo>,</mo></mrow> </math> with <math><mrow><mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>.</mo></mrow> </math> Our main results imply that, once free boundaries are <math> <mrow><msup><mi>C</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>α</mi></mrow> </msup> <mo>,</mo></mrow> </math> then they are <math> <mrow><msup><mi>C</mi> <mi>∞</mi></msup> <mo>.</mo></mrow> </math> In addition <math><mrow><mi>u</mi> <mo>/</mo> <msup><mi>d</mi> <mfrac><mn>2</mn> <mrow><mn>2</mn> <mo>-</mo> <mi>γ</mi></mrow> </mfrac> </msup> </mrow> </math> and <math><msup><mi>u</mi> <mfrac><mrow><mn>2</mn> <mo>-</mo> <mi>γ</mi></mrow> <mn>2</mn></mfrac> </msup> </math> are <math><msup><mi>C</mi> <mi>∞</mi></msup> </math> too. In order to achieve this, we need to establish fine regularity estimates for solutions of linear equations with boundary-singular Hardy potentials <math><mrow><mo>-</mo> <mi>Δ</mi> <mi>v</mi> <mo>=</mo> <mi>κ</mi> <mi>v</mi> <mo>/</mo> <msup><mi>d</mi> <mn>2</mn></msup> </mrow> </math> in <math><mrow><mi>Ω</mi> <mo>,</mo></mrow> </math> where <i>d</i> is the distance to the boundary and <math><mrow><mi>κ</mi> <mo>≤</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> <mo>.</mo></mrow> </math> Interestingly, we need to include even the critical constant <math><mrow><mi>κ</mi> <mo>=</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> <mo>,</mo></mrow> </math> which corresponds to <math><mrow><mi>γ</mi> <mo>=</mo> <mfrac><mn>2</mn> <mn>3</mn></mfrac> <mo>.</mo></mrow></math></p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 3","pages":"3397-3446"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03135-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the higher regularity of solutions and free boundaries in the Alt-Phillips problem Δ u = u γ - 1 , with γ ( 0 , 1 ) . Our main results imply that, once free boundaries are C 1 , α , then they are C . In addition u / d 2 2 - γ and u 2 - γ 2 are C too. In order to achieve this, we need to establish fine regularity estimates for solutions of linear equations with boundary-singular Hardy potentials - Δ v = κ v / d 2 in Ω , where d is the distance to the boundary and κ 1 4 . Interestingly, we need to include even the critical constant κ = 1 4 , which corresponds to γ = 2 3 .

半线性自由边界问题的C∞正则性。
研究了Alt-Phillips问题Δ u = u γ - 1,且γ∈(0,1)的解和自由边界的高正则性。我们的主要结果表明,一旦自由边界是c1, α,那么它们就是C∞。另外u / d22 - γ和u 2 - γ 2也是C∞。为了实现这一点,我们需要为具有边界奇异Hardy势的线性方程的解建立精细的正则性估计- Δ v = κ v / d2在Ω中,其中d是到边界的距离,并且κ≤14。有趣的是,我们甚至需要包括临界常数κ = 14,它对应于γ = 23。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信