{"title":"Using epigenetic clocks in environmental epigenetics: recommendations for estimating biological aging in perinatal and pediatric samples.","authors":"Gillian England-Mason","doi":"10.1042/EBC20253013","DOIUrl":null,"url":null,"abstract":"<p><p>Following a variety of early environmental experiences and exposures, epigenetic modifications such as DNA methylation are proposed as candidate mechanisms that contribute to health and disease across the lifespan. Epigenetic clocks are a type of aging biomarker that can offer insight into age-related changes associated with early environmental exposures. This review provides a brief overview of epigenetic clocks that are readily available for use with perinatal and/or pediatric samples, as well as highlights some recent research that has studied the associations between early environmental chemical exposures and epigenetic aging rates. Broadly, the easily accessible epigenetic clocks can be categorized as chronological age estimators and gestational age estimators, but some clocks were developed for use with specific tissues and/or age groups. Previous environmental epidemiology studies have shown that early environmental exposures such as air pollutants and endocrine-disrupting chemicals are associated with altered epigenetic aging rates in perinatal and pediatric populations. However, more research is needed that examines how factors such as exposure level, timing of exposure, and sex may affect the direction and magnitude of associations. This review concludes with some recommendations and future directions for the use of epigenetic clocks in environmental epigenetics. Overall, epigenetic clocks are promising, non-causal biomarkers of early exposures that can be examined in relation to environmental chemicals, health and disease outcomes, and as biological mediators. Future research could help determine whether these clocks hold promise as informative biomarkers that reflect developmental epigenotoxicity following early exposure to environmental chemicals.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20253013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Following a variety of early environmental experiences and exposures, epigenetic modifications such as DNA methylation are proposed as candidate mechanisms that contribute to health and disease across the lifespan. Epigenetic clocks are a type of aging biomarker that can offer insight into age-related changes associated with early environmental exposures. This review provides a brief overview of epigenetic clocks that are readily available for use with perinatal and/or pediatric samples, as well as highlights some recent research that has studied the associations between early environmental chemical exposures and epigenetic aging rates. Broadly, the easily accessible epigenetic clocks can be categorized as chronological age estimators and gestational age estimators, but some clocks were developed for use with specific tissues and/or age groups. Previous environmental epidemiology studies have shown that early environmental exposures such as air pollutants and endocrine-disrupting chemicals are associated with altered epigenetic aging rates in perinatal and pediatric populations. However, more research is needed that examines how factors such as exposure level, timing of exposure, and sex may affect the direction and magnitude of associations. This review concludes with some recommendations and future directions for the use of epigenetic clocks in environmental epigenetics. Overall, epigenetic clocks are promising, non-causal biomarkers of early exposures that can be examined in relation to environmental chemicals, health and disease outcomes, and as biological mediators. Future research could help determine whether these clocks hold promise as informative biomarkers that reflect developmental epigenotoxicity following early exposure to environmental chemicals.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.