High Levels of Endogenous Omega-3 Fatty Acids Promote Dendritic Cell Antigen Presentation and Improve Dendritic Cell-Based Cancer Vaccine Efficacy in Mice.
Shweta Tiwary, Kevin S Hsu, Katherine C Goldfarbmuren, Zheng Xia, Jay A Berzofsky
{"title":"High Levels of Endogenous Omega-3 Fatty Acids Promote Dendritic Cell Antigen Presentation and Improve Dendritic Cell-Based Cancer Vaccine Efficacy in Mice.","authors":"Shweta Tiwary, Kevin S Hsu, Katherine C Goldfarbmuren, Zheng Xia, Jay A Berzofsky","doi":"10.1158/2326-6066.CIR-24-0927","DOIUrl":null,"url":null,"abstract":"<p><p>Antigen presentation by dendritic cells (DC) is crucial in activating T cells. DCs capture, process, and present antigens to T cells, making them attractive vaccine vehicles. However, most DC cancer vaccines have had limited clinical efficacy, suggesting a need to increase their potency. We report that high levels of omega-3 fatty acids in mice significantly prolonged lifespan and reduced tumor growth and body weight loss. This effect was mediated in part by more effective DC antigen presentation. DCs derived from Tg(CAG-fat-1)Jxk/J transgenic mice expressing high omega-3 lipid levels were better vaccine vehicles than wild-type (WT) DCs in treating cancers in WT mice and in stimulating CD8+ T-cell responses in vitro and in vivo. Although no effect on the levels of expression of costimulatory molecules was detected, we discovered a marked enhancement of T-cell dwell time on DCs. We also observed that differentiating DCs from WT bone marrow in the presence of omega-3 lipids increased DC antigen presentation capacity in vitro, suggesting a potential approach to enhance DC-based cancer vaccine efficacy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1609-1622"},"PeriodicalIF":8.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0927","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antigen presentation by dendritic cells (DC) is crucial in activating T cells. DCs capture, process, and present antigens to T cells, making them attractive vaccine vehicles. However, most DC cancer vaccines have had limited clinical efficacy, suggesting a need to increase their potency. We report that high levels of omega-3 fatty acids in mice significantly prolonged lifespan and reduced tumor growth and body weight loss. This effect was mediated in part by more effective DC antigen presentation. DCs derived from Tg(CAG-fat-1)Jxk/J transgenic mice expressing high omega-3 lipid levels were better vaccine vehicles than wild-type (WT) DCs in treating cancers in WT mice and in stimulating CD8+ T-cell responses in vitro and in vivo. Although no effect on the levels of expression of costimulatory molecules was detected, we discovered a marked enhancement of T-cell dwell time on DCs. We also observed that differentiating DCs from WT bone marrow in the presence of omega-3 lipids increased DC antigen presentation capacity in vitro, suggesting a potential approach to enhance DC-based cancer vaccine efficacy.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.