Co-targeting KRASG12D and the HER family is efficacious in colorectal cancer.

IF 2.9 3区 医学 Q2 ONCOLOGY
Mary Kate Kilroy-Gehret, Cecilia Wischmeier, SoYoung Park, Daniel Choi, Wasim Feroz, Rosalin Mishra, Joan T Garrett
{"title":"Co-targeting KRASG12D and the HER family is efficacious in colorectal cancer.","authors":"Mary Kate Kilroy-Gehret, Cecilia Wischmeier, SoYoung Park, Daniel Choi, Wasim Feroz, Rosalin Mishra, Joan T Garrett","doi":"10.1093/carcin/bgaf036","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second leading cause of cancer deaths worldwide, with roughly 41% of CRC cases harboring a KRAS mutation. Acquired resistance to KRAS-targeted treatments has occurred with mechanisms including increased HER family expression among other receptor tyrosine kinases. HER3, a member of the HER family that is kinase impaired, has been shown to be a resistance mechanism upon inhibition of the HER family and downstream targets, including RAS/MEK/ERK and PI3K/AKT. We find that KRAS mutations tend to co-occur with HER3 alterations in a large panel of cancers and in CRCs. Our results show that both total and activated HER3 levels increase in CRC patient-derived organoids and cell lines after treatment with KRASG12D targeted agents, indicating that HER3 could be a potential adaptive response mechanism to KRAS-targeted therapy. Further, we found that genetic knock-down of KRAS and HER3 resulted in a reduction in the growth of CRC cells compared to a single knockdown of either KRAS or HER3. We observed that kinase-impaired HER3 binding partners, as assessed by immunoprecipitation, is cell dependent with EGFR binding HER3 in one cell line. After co-treating CRC cells with pan-HER inhibitors in combination with MRTX1133, a KRASG12D inhibitor, synergistic and additive effects in the reduction in cell growth were observed. Finally, we found that co-targeting KRASG12D mutant cells with a KRASG12D inhibitor and a HER3 antibody-drug conjugate further reduced cell viability. We posit that co-targeting both KRASG12D and HER3, whether directly or indirectly, is a potential therapeutic strategy in CRC patients.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgaf036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer deaths worldwide, with roughly 41% of CRC cases harboring a KRAS mutation. Acquired resistance to KRAS-targeted treatments has occurred with mechanisms including increased HER family expression among other receptor tyrosine kinases. HER3, a member of the HER family that is kinase impaired, has been shown to be a resistance mechanism upon inhibition of the HER family and downstream targets, including RAS/MEK/ERK and PI3K/AKT. We find that KRAS mutations tend to co-occur with HER3 alterations in a large panel of cancers and in CRCs. Our results show that both total and activated HER3 levels increase in CRC patient-derived organoids and cell lines after treatment with KRASG12D targeted agents, indicating that HER3 could be a potential adaptive response mechanism to KRAS-targeted therapy. Further, we found that genetic knock-down of KRAS and HER3 resulted in a reduction in the growth of CRC cells compared to a single knockdown of either KRAS or HER3. We observed that kinase-impaired HER3 binding partners, as assessed by immunoprecipitation, is cell dependent with EGFR binding HER3 in one cell line. After co-treating CRC cells with pan-HER inhibitors in combination with MRTX1133, a KRASG12D inhibitor, synergistic and additive effects in the reduction in cell growth were observed. Finally, we found that co-targeting KRASG12D mutant cells with a KRASG12D inhibitor and a HER3 antibody-drug conjugate further reduced cell viability. We posit that co-targeting both KRASG12D and HER3, whether directly or indirectly, is a potential therapeutic strategy in CRC patients.

联合靶向KRASG12D和HER家族治疗结直肠癌有效。
结直肠癌(CRC)是全球癌症死亡的第二大原因,大约41%的CRC病例携带KRAS突变。对kras靶向治疗的获得性耐药发生的机制包括HER家族在其他受体酪氨酸激酶中的表达增加。HER3是HER家族中激酶受损的成员,已被证明是抑制HER家族和下游靶点(包括RAS/MEK/ERK和PI3K/AKT)的耐药机制。我们发现KRAS突变倾向于与HER3突变共同发生在大量癌症和crc中。我们的研究结果表明,KRASG12D靶向药物治疗后,CRC患者衍生的类器官和细胞系中总HER3和活化HER3水平均升高,表明HER3可能是kras靶向治疗的潜在适应性反应机制。此外,我们发现,与KRAS或HER3的基因敲低相比,KRAS和HER3的基因敲低导致结直肠癌细胞的生长减少。我们观察到,通过免疫沉淀评估,在一个细胞系中,激酶受损的HER3结合伙伴与EGFR结合HER3是细胞依赖性的。pan-HER抑制剂与KRASG12D抑制剂MRTX1133联合治疗CRC细胞后,观察到细胞生长减少的协同效应和加性效应。最后,我们发现KRASG12D抑制剂和HER3抗体-药物偶联物共同靶向KRASG12D突变细胞进一步降低了细胞活力。我们假设KRASG12D和HER3共同靶向,无论是直接还是间接,都是CRC患者的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carcinogenesis
Carcinogenesis 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
95
审稿时长
1 months
期刊介绍: Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信