A Spatial Hierarchical PGEV Model With Temporal Effects for Enhancing Extreme Value Analysis

IF 1.7 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-08-05 DOI:10.1002/env.70031
Tzu-Han Peng, Cheng-Ching Lin, Nan-Jung Hsu, Chun-Shu Chen
{"title":"A Spatial Hierarchical PGEV Model With Temporal Effects for Enhancing Extreme Value Analysis","authors":"Tzu-Han Peng,&nbsp;Cheng-Ching Lin,&nbsp;Nan-Jung Hsu,&nbsp;Chun-Shu Chen","doi":"10.1002/env.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The peaks over threshold generalized extreme value (PGEV) model by Olafsdottir et al. (2021) is a statistical framework that combines the generalized extreme value (GEV) distribution with the peaks over threshold (PoT) approach, commonly utilized in extreme value analysis. This model effectively fits block maximum data, allowing for the estimation of trends in their intensity and frequency. Incorporating spatial and temporal effects into the PGEV model is crucial when analyzing climate and environmental datasets. We propose a novel spatial hierarchical PGEV model with temporal effects that captures spatial information via a latent Gaussian process applied to the PGEV parameters and integrates time covariates to account for temporal effects. To enhance computational efficiency, we employ the Laplace approximation method as an effective alternative to the traditional Markov Chain Monte Carlo (MCMC) parameter estimation techniques. We demonstrate the efficacy of our proposed methodology through extensive simulation studies covering various scenarios. Additionally, we illustrate the practical application of our model by analyzing rainfall data from Taiwan. Our findings highlight the model's potential for robust extreme value analysis in the context of climate research.</p>\n </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70031","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The peaks over threshold generalized extreme value (PGEV) model by Olafsdottir et al. (2021) is a statistical framework that combines the generalized extreme value (GEV) distribution with the peaks over threshold (PoT) approach, commonly utilized in extreme value analysis. This model effectively fits block maximum data, allowing for the estimation of trends in their intensity and frequency. Incorporating spatial and temporal effects into the PGEV model is crucial when analyzing climate and environmental datasets. We propose a novel spatial hierarchical PGEV model with temporal effects that captures spatial information via a latent Gaussian process applied to the PGEV parameters and integrates time covariates to account for temporal effects. To enhance computational efficiency, we employ the Laplace approximation method as an effective alternative to the traditional Markov Chain Monte Carlo (MCMC) parameter estimation techniques. We demonstrate the efficacy of our proposed methodology through extensive simulation studies covering various scenarios. Additionally, we illustrate the practical application of our model by analyzing rainfall data from Taiwan. Our findings highlight the model's potential for robust extreme value analysis in the context of climate research.

一种具有时间效应的空间层次PGEV模型增强极值分析
Olafsdottir等人(2021)提出的峰值超过阈值广义极值(PGEV)模型是一种将广义极值(GEV)分布与峰值超过阈值(PoT)方法相结合的统计框架,该方法通常用于极值分析。该模型有效地拟合块最大数据,允许估计其强度和频率的趋势。在分析气候和环境数据集时,将时空效应纳入PGEV模式至关重要。我们提出了一种新的具有时间效应的空间分层PGEV模型,该模型通过应用于PGEV参数的潜在高斯过程捕获空间信息,并集成时间协变量来解释时间效应。为了提高计算效率,我们采用拉普拉斯近似方法作为传统马尔可夫链蒙特卡罗(MCMC)参数估计技术的有效替代方法。我们通过涵盖各种场景的广泛模拟研究证明了我们提出的方法的有效性。此外,我们以台湾地区的降雨资料为例,说明模型的实际应用。我们的发现突出了该模型在气候研究背景下进行稳健极值分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信