Electrical Infrastructure Monitoring: Case of NTDCL’s 500kV Network Insulator Detection With YoloV8

IF 3.2 Q3 ENERGY & FUELS
Shafi Muhammad Jiskani;Tanweer Hussain;Anwar Ali Sahito;Faheemullah Shaikh;Laveet Kumar
{"title":"Electrical Infrastructure Monitoring: Case of NTDCL’s 500kV Network Insulator Detection With YoloV8","authors":"Shafi Muhammad Jiskani;Tanweer Hussain;Anwar Ali Sahito;Faheemullah Shaikh;Laveet Kumar","doi":"10.1109/OAJPE.2025.3592698","DOIUrl":null,"url":null,"abstract":"High voltage electrical infrastructure inspection requires condition monitoring of transmission line assets to avoid any possible failures or emergency. Detection of insulators in strings is linked with electrical infrastructure monitoring pertaining to the insulator fault classification. The dataset widely available for insulator monitoring are either synthetic, lab created or publicly not available. In this paper, an indigenous dataset is created using Autonomous Aerial Vehicles (AAV) technology, capturing images in diverse topographical ambience across different transmission lines/circuits managed by National transmission and dispatch company ltd. in Pakistan. For detection of insulators in string, object detector model You Only Look Once-version 8 (YOLOv8n) is trained on created dataset of 3618 images, 603 being original and other augmented, after preprocessing and augmentation techniques were applied. The model’s performance is up to the mark with accuracy of 92%. The precision and recall being 0.95 and 0.90 respectively, whereas F1 score of the model peaked at 0.95 at confidence level of 0.652.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"505-514"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11096616","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11096616/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High voltage electrical infrastructure inspection requires condition monitoring of transmission line assets to avoid any possible failures or emergency. Detection of insulators in strings is linked with electrical infrastructure monitoring pertaining to the insulator fault classification. The dataset widely available for insulator monitoring are either synthetic, lab created or publicly not available. In this paper, an indigenous dataset is created using Autonomous Aerial Vehicles (AAV) technology, capturing images in diverse topographical ambience across different transmission lines/circuits managed by National transmission and dispatch company ltd. in Pakistan. For detection of insulators in string, object detector model You Only Look Once-version 8 (YOLOv8n) is trained on created dataset of 3618 images, 603 being original and other augmented, after preprocessing and augmentation techniques were applied. The model’s performance is up to the mark with accuracy of 92%. The precision and recall being 0.95 and 0.90 respectively, whereas F1 score of the model peaked at 0.95 at confidence level of 0.652.
电力基础设施监测:NTDCL公司500kV网络绝缘子YoloV8检测案例
高压电力基础设施检查需要对输电线路资产进行状态监测,以避免任何可能的故障或紧急情况。串接绝缘子的检测与绝缘子故障分类相关的电气基础设施监测息息相关。广泛用于绝缘体监测的数据集要么是合成的,要么是实验室创建的,要么是公开不可用的。在本文中,使用自主飞行器(AAV)技术创建了一个本地数据集,在巴基斯坦国家输电和调度公司有限公司管理的不同输电线路/电路中捕获不同地形环境下的图像。针对字符串中绝缘子的检测,在创建的3618张图像数据集上,使用预处理和增强技术,训练You Only Look Once-version 8 (YOLOv8n)目标检测器模型,其中603张为原始图像,其余为增强图像。该模型的性能达到了要求,准确率达到92%。精密度和召回率分别为0.95和0.90,而在置信水平为0.652时,模型的F1得分达到了0.95的峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信