Module-Pruning-Based Neural Architectural Search for Remote Sensing Image Captioning

IF 4.4
Yogendra Rao Musunuri;Changwon Kim;Oh-Seol Kwon;Sun-Yuan Kung
{"title":"Module-Pruning-Based Neural Architectural Search for Remote Sensing Image Captioning","authors":"Yogendra Rao Musunuri;Changwon Kim;Oh-Seol Kwon;Sun-Yuan Kung","doi":"10.1109/LGRS.2025.3593475","DOIUrl":null,"url":null,"abstract":"Remote sensing image captioning (RSIC) has garnered significant attention for enhancing the interpretability of aerial imagery through textual descriptions. Conventional approaches employ convolutional neural networks (CNNs) for visual feature extraction paired with recurrent neural networks (RNNs) or transformers for caption generation. However, these architectures suffer from high complexity and computational costs. While neural architecture search (NAS) via network pruning has been extensively studied, module-based pruning for RSIC systems remains largely unexplored. We propose a novel dedicated decoder pruning methodology for sequential caption generators—a module-based pruning method for end-to-end encoder–decoder architectural adaptation. It features two key innovations: 1) structured pruning of a pre-trained ResNet encoder and transformer encoder–decoder components and 2) a cross-entropy-based caption matching strategy replacing conventional prediction training in the decoder’s final layer. The proposed method enables simultaneously enhancing inference efficiency and reducing storage requirements without compromising performance. As evaluated on the RSICD dataset using CIDEr, ROUGE, METEOR, bilingual evaluation understudy (BLEU), and Sm metrics, our method achieves 42.8% model size reduction while improving accuracy, establishing new benchmarks in efficient RSIC.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11098904/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing image captioning (RSIC) has garnered significant attention for enhancing the interpretability of aerial imagery through textual descriptions. Conventional approaches employ convolutional neural networks (CNNs) for visual feature extraction paired with recurrent neural networks (RNNs) or transformers for caption generation. However, these architectures suffer from high complexity and computational costs. While neural architecture search (NAS) via network pruning has been extensively studied, module-based pruning for RSIC systems remains largely unexplored. We propose a novel dedicated decoder pruning methodology for sequential caption generators—a module-based pruning method for end-to-end encoder–decoder architectural adaptation. It features two key innovations: 1) structured pruning of a pre-trained ResNet encoder and transformer encoder–decoder components and 2) a cross-entropy-based caption matching strategy replacing conventional prediction training in the decoder’s final layer. The proposed method enables simultaneously enhancing inference efficiency and reducing storage requirements without compromising performance. As evaluated on the RSICD dataset using CIDEr, ROUGE, METEOR, bilingual evaluation understudy (BLEU), and Sm metrics, our method achieves 42.8% model size reduction while improving accuracy, establishing new benchmarks in efficient RSIC.
基于模块剪枝的遥感图像标题神经结构搜索
遥感图像字幕(RSIC)通过文本描述来提高航空图像的可解释性,已经引起了人们的广泛关注。传统的方法使用卷积神经网络(cnn)进行视觉特征提取,并使用递归神经网络(rnn)或变压器进行标题生成。然而,这些体系结构的复杂性和计算成本都很高。虽然通过网络修剪的神经结构搜索(NAS)已经得到了广泛的研究,但基于模块的RSIC系统修剪在很大程度上仍未被探索。我们提出了一种新的用于顺序标题生成器的专用解码器修剪方法-一种基于模块的端到端编码器-解码器架构自适应的修剪方法。它具有两个关键的创新:1)预训练的ResNet编码器和变压器编码器-解码器组件的结构化修剪;2)在解码器的最后一层中,基于交叉熵的标题匹配策略取代了传统的预测训练。该方法能够在不影响性能的情况下同时提高推理效率和降低存储需求。通过CIDEr、ROUGE、METEOR、双语评估替补(BLEU)和Sm指标在RSICD数据集上的评估,我们的方法在提高准确率的同时减少了42.8%的模型大小,为高效的RSIC建立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信