Pallavi Gupta , Zhihong Zhang , Meijia Song , Martin Michalowski , Xiao Hu , Gregor Stiglic , Maxim Topaz
{"title":"Rapid review: Growing usage of Multimodal Large Language Models in healthcare","authors":"Pallavi Gupta , Zhihong Zhang , Meijia Song , Martin Michalowski , Xiao Hu , Gregor Stiglic , Maxim Topaz","doi":"10.1016/j.jbi.2025.104875","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Recent advancements in large language models (LLMs) have led to multimodal LLMs (MLLMs), which integrate multiple data modalities beyond text. Although MLLMs show promise, there is a gap in the literature that empirically demonstrates their impact in healthcare. This paper summarizes the applications of MLLMs in healthcare, highlighting their potential to transform health practices.</div></div><div><h3>Methods:</h3><div>A rapid literature review was conducted in August 2024 using World Health Organization (WHO) rapid-review methodology and PRISMA standards, with searches across four databases (Scopus, Medline, PubMed and ACM Digital Library) and top-tier conferences—including NeurIPS, ICML, AAAI, MICCAI, CVPR, ACL and EMNLP. Articles on MLLMs healthcare applications were included for analysis based on inclusion and exclusion criteria.</div></div><div><h3>Results:</h3><div>The search yielded 115 articles, 39 included in the final analysis. Of these, 77% appeared online (preprints and published) in 2024, reflecting the emergence of MLLMs. 80% of studies were from Asia and North America (mainly China and US), with Europe lagging. Studies split evenly between pre-built MLLMs evaluations (60% focused on GPT versions) and custom MLLMs/frameworks development with task-specific customizations. About 81% of studies examined MLLMs for diagnosis and reporting in radiology, pathology, and ophthalmology, with additional applications in education, surgery, and mental health. Prompting strategies, used in 80% of studies, improved performance in nearly half. However, evaluation practices were inconsistent with 67% reported accuracy. Error analysis was mostly anecdotal, with only 18% categorized failure types. Only 13% validated explainability through clinician feedback. Clinical deployment was demonstrated in just 3% of studies, and workflow integration, governance, and safety were rarely addressed.</div></div><div><h3>Discussion and Conclusion:</h3><div>MLLMs offer substantial potential for healthcare transformation through multimodal data integration. Yet, methodological inconsistencies, limited validation, and underdeveloped deployment strategies highlight the need for standardized evaluation metrics, structured error analysis, and human-centered design to support safe, scalable, and trustworthy clinical adoption.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"169 ","pages":"Article 104875"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Recent advancements in large language models (LLMs) have led to multimodal LLMs (MLLMs), which integrate multiple data modalities beyond text. Although MLLMs show promise, there is a gap in the literature that empirically demonstrates their impact in healthcare. This paper summarizes the applications of MLLMs in healthcare, highlighting their potential to transform health practices.
Methods:
A rapid literature review was conducted in August 2024 using World Health Organization (WHO) rapid-review methodology and PRISMA standards, with searches across four databases (Scopus, Medline, PubMed and ACM Digital Library) and top-tier conferences—including NeurIPS, ICML, AAAI, MICCAI, CVPR, ACL and EMNLP. Articles on MLLMs healthcare applications were included for analysis based on inclusion and exclusion criteria.
Results:
The search yielded 115 articles, 39 included in the final analysis. Of these, 77% appeared online (preprints and published) in 2024, reflecting the emergence of MLLMs. 80% of studies were from Asia and North America (mainly China and US), with Europe lagging. Studies split evenly between pre-built MLLMs evaluations (60% focused on GPT versions) and custom MLLMs/frameworks development with task-specific customizations. About 81% of studies examined MLLMs for diagnosis and reporting in radiology, pathology, and ophthalmology, with additional applications in education, surgery, and mental health. Prompting strategies, used in 80% of studies, improved performance in nearly half. However, evaluation practices were inconsistent with 67% reported accuracy. Error analysis was mostly anecdotal, with only 18% categorized failure types. Only 13% validated explainability through clinician feedback. Clinical deployment was demonstrated in just 3% of studies, and workflow integration, governance, and safety were rarely addressed.
Discussion and Conclusion:
MLLMs offer substantial potential for healthcare transformation through multimodal data integration. Yet, methodological inconsistencies, limited validation, and underdeveloped deployment strategies highlight the need for standardized evaluation metrics, structured error analysis, and human-centered design to support safe, scalable, and trustworthy clinical adoption.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.