The PPAR-β/δ agonist GW0742 alleviates DNA damage and lupus nephritis in an animal model of systemic lupus erythematosus via restoring DNA repair gene expression
IF 2.5 4区 医学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohamed S.M. Attia , Mohammed A. Al-Hamamah , Sheikh F. Ahmad , Ahmed Nadeem , Saleh A. Bakheet , Mushtaq A. Ansari , Gamaleldin I. Harisa , Talha Bin Emran , Sabry M. Attia
{"title":"The PPAR-β/δ agonist GW0742 alleviates DNA damage and lupus nephritis in an animal model of systemic lupus erythematosus via restoring DNA repair gene expression","authors":"Mohamed S.M. Attia , Mohammed A. Al-Hamamah , Sheikh F. Ahmad , Ahmed Nadeem , Saleh A. Bakheet , Mushtaq A. Ansari , Gamaleldin I. Harisa , Talha Bin Emran , Sabry M. Attia","doi":"10.1016/j.mrgentox.2025.503881","DOIUrl":null,"url":null,"abstract":"<div><div>Systemic lupus erythematosus (SLE) is a persistent autoimmune inflammatory disease associated with an elevated risk of kidney damage. The etiology of SLE remains unclear; nevertheless, current investigations increasingly indicate that increased DNA damage and deficiencies in the mechanisms of its repair might contribute to its pathogenesis, necessitating the identification and management of the disease. Therapies for SLE have improved considerably over recent decades. However, drugs that specifically address the underlying pathogenic pathways, such as potential DNA repair deficiencies, are unavailable. In this situation, drugs that ameliorate the altered DNA damage/repair might be a possible option for treating SLE. We investigated whether GW0742, an agonist of the peroxisome proliferator activator receptor β/δ, improves kidney function and ameliorates DNA damage/repair alteration in female lupus-prone mice. The results demonstrate that the repeated administration of GW0742 significantly ameliorates DNA damage/repair alteration in the bone marrow cells of lupus-prone animals, as assessed by the comet test. Furthermore, the administration of GW0742 restored the impaired DNA damage/repair pathway in lupus-prone mice by decreasing Gadd45a and p53 expression while elevating Ogg1 and Parp1 in the kidney tissues. The administration of GW0742 recovered the disturbed kidney redox balance in lupus-prone mice. It also ameliorated the altered biochemical markers related to lupus nephritis, as demonstrated by reduced levels of urinary protein and albumin, serum creatinine, and BUN. GW0742's protective outcome was verified by its ability to diminish the increased inflammatory marker MPO activity and ameliorated kidney histological characteristics of SLE. This suggests that GW0742 is a promising novel therapeutic agent for managing SLE and its associated complications.</div></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"906 ","pages":"Article 503881"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571825000403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Systemic lupus erythematosus (SLE) is a persistent autoimmune inflammatory disease associated with an elevated risk of kidney damage. The etiology of SLE remains unclear; nevertheless, current investigations increasingly indicate that increased DNA damage and deficiencies in the mechanisms of its repair might contribute to its pathogenesis, necessitating the identification and management of the disease. Therapies for SLE have improved considerably over recent decades. However, drugs that specifically address the underlying pathogenic pathways, such as potential DNA repair deficiencies, are unavailable. In this situation, drugs that ameliorate the altered DNA damage/repair might be a possible option for treating SLE. We investigated whether GW0742, an agonist of the peroxisome proliferator activator receptor β/δ, improves kidney function and ameliorates DNA damage/repair alteration in female lupus-prone mice. The results demonstrate that the repeated administration of GW0742 significantly ameliorates DNA damage/repair alteration in the bone marrow cells of lupus-prone animals, as assessed by the comet test. Furthermore, the administration of GW0742 restored the impaired DNA damage/repair pathway in lupus-prone mice by decreasing Gadd45a and p53 expression while elevating Ogg1 and Parp1 in the kidney tissues. The administration of GW0742 recovered the disturbed kidney redox balance in lupus-prone mice. It also ameliorated the altered biochemical markers related to lupus nephritis, as demonstrated by reduced levels of urinary protein and albumin, serum creatinine, and BUN. GW0742's protective outcome was verified by its ability to diminish the increased inflammatory marker MPO activity and ameliorated kidney histological characteristics of SLE. This suggests that GW0742 is a promising novel therapeutic agent for managing SLE and its associated complications.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.