A fine-grained evaluation framework for language models: Combining pointwise grading and pairwise comparison

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yijie Li , Yuan Sun
{"title":"A fine-grained evaluation framework for language models: Combining pointwise grading and pairwise comparison","authors":"Yijie Li ,&nbsp;Yuan Sun","doi":"10.1016/j.ipm.2025.104270","DOIUrl":null,"url":null,"abstract":"<div><div>Automated evaluation of Large Language Models (LLMs) responses face fundamental challenges: evaluation bias, protocol inflexibility, and the trade-off between quality and accessibility. Current paradigms either rely heavily on expensive proprietary models or suffer from systematic biases and limited evaluation modes. We introduce MELD, an 8B-parameter evaluation model designed to overcome these limitations via systematic bias mitigation and multi-protocol adaptability. MELD is trained on a comprehensive dataset covering eight categories and 50 subcategories, each with tailored evaluation criteria. It supports both pointwise grading and pairwise comparison through model merging, achieving robust performance across protocols. Experiments show MELD consistently outperforms open-source baselines and matches or surpasses GPT-4 in human alignment. Notably, MELD reduces bias in position, length, and content. The framework includes a lightweight quantized deployment option, enabling high-quality evaluation in resource-constrained settings. This work provides a practical, cost-effective solution for LLM evaluation. Resources are available at: <span><span>https://github.com/Bound2-2/MELD-Eval</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104270"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002110","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Automated evaluation of Large Language Models (LLMs) responses face fundamental challenges: evaluation bias, protocol inflexibility, and the trade-off between quality and accessibility. Current paradigms either rely heavily on expensive proprietary models or suffer from systematic biases and limited evaluation modes. We introduce MELD, an 8B-parameter evaluation model designed to overcome these limitations via systematic bias mitigation and multi-protocol adaptability. MELD is trained on a comprehensive dataset covering eight categories and 50 subcategories, each with tailored evaluation criteria. It supports both pointwise grading and pairwise comparison through model merging, achieving robust performance across protocols. Experiments show MELD consistently outperforms open-source baselines and matches or surpasses GPT-4 in human alignment. Notably, MELD reduces bias in position, length, and content. The framework includes a lightweight quantized deployment option, enabling high-quality evaluation in resource-constrained settings. This work provides a practical, cost-effective solution for LLM evaluation. Resources are available at: https://github.com/Bound2-2/MELD-Eval.
语言模型的细粒度评估框架:结合逐点分级和两两比较
大型语言模型(llm)响应的自动评估面临着基本的挑战:评估偏差、协议缺乏灵活性,以及质量和可访问性之间的权衡。当前的范例要么严重依赖昂贵的专有模型,要么受到系统偏差和有限的评估模式的影响。我们介绍了MELD,一个8b参数评估模型,旨在通过系统偏差缓解和多协议适应性来克服这些限制。MELD在一个涵盖8个类别和50个子类别的综合数据集上进行训练,每个类别都有量身定制的评估标准。它通过模型合并支持点对分级和两两比较,实现了跨协议的健壮性能。实验表明,MELD始终优于开源基线,在人类对齐方面匹配或超过GPT-4。值得注意的是,MELD减少了位置、长度和内容上的偏差。该框架包括一个轻量级的量化部署选项,支持在资源受限的情况下进行高质量的评估。这项工作为法学硕士评估提供了一种实用、经济的解决方案。资源可在:https://github.com/Bound2-2/MELD-Eval。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信