{"title":"HIV-1 gp160 in nanodiscs: Unravelling structures and guiding vaccine design","authors":"Nancy M. Elbaz, Mahmoud L. Nasr","doi":"10.1016/j.sbi.2025.103122","DOIUrl":null,"url":null,"abstract":"<div><div>The stabilization of HIV-1 gp160 trimers (Env) within phospholipid bilayer nanodiscs has provided critical structural insights into the membrane-proximal external region (MPER) and the broader dynamics of gp160. Cryo-EM and molecular simulations reveal that the membrane context preserves the MPER architecture and captures spontaneous trimer asymmetry, as well as ectodomain tilting. These dynamic properties expose vulnerable epitopes that are targeted by broadly neutralizing antibodies (bnAbs). Studies using nanodiscs have highlighted how interactions with the membrane affect the structure of gp160, the accessibility of epitopes, and the mechanisms of neutralization, providing important insights for immunogen design. Unlike soluble SOSIP and IDL constructs, full-length nanodisc-embedded gp160 maintains its native stability, flexibility, and the complete set of neutralization epitopes, suggesting that membrane-mimicking platforms are essential for the rational design of next-generation HIV vaccines targeting conserved regions, such as the MPER.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103122"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X2500140X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stabilization of HIV-1 gp160 trimers (Env) within phospholipid bilayer nanodiscs has provided critical structural insights into the membrane-proximal external region (MPER) and the broader dynamics of gp160. Cryo-EM and molecular simulations reveal that the membrane context preserves the MPER architecture and captures spontaneous trimer asymmetry, as well as ectodomain tilting. These dynamic properties expose vulnerable epitopes that are targeted by broadly neutralizing antibodies (bnAbs). Studies using nanodiscs have highlighted how interactions with the membrane affect the structure of gp160, the accessibility of epitopes, and the mechanisms of neutralization, providing important insights for immunogen design. Unlike soluble SOSIP and IDL constructs, full-length nanodisc-embedded gp160 maintains its native stability, flexibility, and the complete set of neutralization epitopes, suggesting that membrane-mimicking platforms are essential for the rational design of next-generation HIV vaccines targeting conserved regions, such as the MPER.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation