Joon Kim , Hoyeon Lee , Jonghyeok Park , Sang Hyun Park , Myungjae Lee , Leonard Sunwoo , Chi Kyung Kim , Beom Joon Kim , Dong-Eog Kim , Wi-Sun Ryu
{"title":"In-silo federated learning vs. centralized learning for segmenting acute and chronic ischemic brain lesions","authors":"Joon Kim , Hoyeon Lee , Jonghyeok Park , Sang Hyun Park , Myungjae Lee , Leonard Sunwoo , Chi Kyung Kim , Beom Joon Kim , Dong-Eog Kim , Wi-Sun Ryu","doi":"10.1016/j.ibmed.2025.100283","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To investigate the efficacy of federated learning (FL) compared to industry-level centralized learning (CL) for segmenting acute infarct and white matter hyperintensity.</div></div><div><h3>Materials and methods</h3><div>This retrospective study included 13,546 diffusion-weighted images (DWI) from 10 hospitals and 8421 fluid-attenuated inversion recovery (FLAIR) images from 9 hospitals for acute (Task I) and chronic (Task II) lesion segmentation. We trained with datasets originated from 9 and 3 institutions for Task I and Task II, respectively, and externally tested them in datasets originated from 1 and 6 institutions each. For FL, the central server aggregated training results every four rounds with FedYogi (Task I) and FedAvg (Task II). A batch clipping strategy was tested for the FL models. Performances were evaluated with the Dice similarity coefficient (DSC).</div></div><div><h3>Results</h3><div>The mean ages (SD) for the training datasets were 68.1 (12.8) for Task I and 67.4 (13.0) for Task II. The frequency of male participants was 51.5 % and 60.4 %, respectively. In Task I, the FL model employing batch clipping trained for 360 epochs achieved a DSC of 0.754 ± 0.183, surpassing an equivalently trained CL model (DSC 0.691 ± 0.229; p < 0.001) and comparable to the best-performing CL model at 940 epochs (DSC 0.755 ± 0.207; p = 0.701). In Task II, no significant differences were observed amongst FL model with clipping, without clipping, and CL model after 48 epochs (DSCs of 0.761 ± 0.299, 0.751 ± 0.304, 0.744 ± 0.304). Few-shot FL showed significantly lower performance. Task II reduced training times with batch clipping (3.5–1.75 h).</div></div><div><h3>Conclusions</h3><div>Comparisons between CL and FL in identical settings suggest the feasibility of FL for medical image segmentation.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100283"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
To investigate the efficacy of federated learning (FL) compared to industry-level centralized learning (CL) for segmenting acute infarct and white matter hyperintensity.
Materials and methods
This retrospective study included 13,546 diffusion-weighted images (DWI) from 10 hospitals and 8421 fluid-attenuated inversion recovery (FLAIR) images from 9 hospitals for acute (Task I) and chronic (Task II) lesion segmentation. We trained with datasets originated from 9 and 3 institutions for Task I and Task II, respectively, and externally tested them in datasets originated from 1 and 6 institutions each. For FL, the central server aggregated training results every four rounds with FedYogi (Task I) and FedAvg (Task II). A batch clipping strategy was tested for the FL models. Performances were evaluated with the Dice similarity coefficient (DSC).
Results
The mean ages (SD) for the training datasets were 68.1 (12.8) for Task I and 67.4 (13.0) for Task II. The frequency of male participants was 51.5 % and 60.4 %, respectively. In Task I, the FL model employing batch clipping trained for 360 epochs achieved a DSC of 0.754 ± 0.183, surpassing an equivalently trained CL model (DSC 0.691 ± 0.229; p < 0.001) and comparable to the best-performing CL model at 940 epochs (DSC 0.755 ± 0.207; p = 0.701). In Task II, no significant differences were observed amongst FL model with clipping, without clipping, and CL model after 48 epochs (DSCs of 0.761 ± 0.299, 0.751 ± 0.304, 0.744 ± 0.304). Few-shot FL showed significantly lower performance. Task II reduced training times with batch clipping (3.5–1.75 h).
Conclusions
Comparisons between CL and FL in identical settings suggest the feasibility of FL for medical image segmentation.