Fusion feature contrastive learning and supervisory regularization for weakly supervised semantic segmentation

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weizheng Wang , Lei Zhou , Haonan Wang
{"title":"Fusion feature contrastive learning and supervisory regularization for weakly supervised semantic segmentation","authors":"Weizheng Wang ,&nbsp;Lei Zhou ,&nbsp;Haonan Wang","doi":"10.1016/j.jvcir.2025.104538","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly supervised semantic segmentation (WSSS) based on image-level labels is a challenging task. WSSS methods using image-level labels typically employ Class Activation Maps (CAM) as pseudo labels. However, many methods using Convolutional Neural Network (CNN) models are affected by their local perception capabilities, resulting in CAM that only distinguish the most salient object regions. To address this issue, building upon the Vision Transformer (ViT) model as the backbone, we design a Fusion Feature Contrastive Learning (FFCL) method that utilizes feature information relationships from ViT’s intermediate layer to guide the final layer’s feature information, improving the quality of CAM. Moreover, We also propose a Supervisory Regularization (SR) strategy that fully utilizes auxiliary CAM feature information to guide the final layer’s CAM, enhancing the completeness of the CAM activation areas. The experiments on the PASCAL VOC 2012 and MS COCO 2014 datasets show that our proposed method achieves prominent improvements.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"111 ","pages":"Article 104538"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104732032500152X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised semantic segmentation (WSSS) based on image-level labels is a challenging task. WSSS methods using image-level labels typically employ Class Activation Maps (CAM) as pseudo labels. However, many methods using Convolutional Neural Network (CNN) models are affected by their local perception capabilities, resulting in CAM that only distinguish the most salient object regions. To address this issue, building upon the Vision Transformer (ViT) model as the backbone, we design a Fusion Feature Contrastive Learning (FFCL) method that utilizes feature information relationships from ViT’s intermediate layer to guide the final layer’s feature information, improving the quality of CAM. Moreover, We also propose a Supervisory Regularization (SR) strategy that fully utilizes auxiliary CAM feature information to guide the final layer’s CAM, enhancing the completeness of the CAM activation areas. The experiments on the PASCAL VOC 2012 and MS COCO 2014 datasets show that our proposed method achieves prominent improvements.
弱监督语义分割的融合特征对比学习和监督正则化
基于图像级标签的弱监督语义分割是一项具有挑战性的任务。使用图像级标签的WSSS方法通常使用类激活映射(Class Activation Maps, CAM)作为伪标签。然而,许多使用卷积神经网络(CNN)模型的方法受到其局部感知能力的影响,导致CAM只能区分最显著的目标区域。为了解决这一问题,我们以视觉变换模型(Vision Transformer, ViT)为主干,设计了融合特征对比学习(Fusion Feature contractlearning, FFCL)方法,利用视觉变换中间层的特征信息关系来指导最终层的特征信息,从而提高CAM的质量。此外,我们还提出了一种监督正则化(SR)策略,该策略充分利用辅助CAM特征信息来指导最终层的CAM,提高了CAM激活区域的完整性。在PASCAL VOC 2012和MS COCO 2014数据集上的实验表明,我们的方法取得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信