Bayesian generalized dissimilarity model for marine biodiversity analysis

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-29 DOI:10.1016/j.mex.2025.103532
Evellin Dewi Lusiana , Suci Astutik , Nurjannah , Abu Bakar Sambah
{"title":"Bayesian generalized dissimilarity model for marine biodiversity analysis","authors":"Evellin Dewi Lusiana ,&nbsp;Suci Astutik ,&nbsp;Nurjannah ,&nbsp;Abu Bakar Sambah","doi":"10.1016/j.mex.2025.103532","DOIUrl":null,"url":null,"abstract":"<div><div>Marine biodiversity is crucial for ocean ecosystems and global ecological services. The spatial changes in the biodiversity can be assessed by modeling the beta diversity indices using the Generalized Dissimilarity Model (GDM) which captures nonlinear species-environment relationships through I-splines but the method lacks interval estimates. The Bayesian Bootstrap GDM (BBGDM) also provides confidence intervals but does not incorporate the knowledge of ecological priors. Therefore, this study aimed to propose a Bayesian Generalized Dissimilarity Model (BGDM) that integrated ecological priors such as non-negative regression coefficients into a fully Bayesian framework. Hamiltonian Monte Carlo (HMC) was used for efficient posterior sampling. The results showed that BGDM improved both uncertainty quantification and model interpretability. It was further applied to analyze the marine biodiversity patterns in the Lesser Sunda Islands to show more robust responses to environmental gradients compared to GDM and BBGDM.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103532"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine biodiversity is crucial for ocean ecosystems and global ecological services. The spatial changes in the biodiversity can be assessed by modeling the beta diversity indices using the Generalized Dissimilarity Model (GDM) which captures nonlinear species-environment relationships through I-splines but the method lacks interval estimates. The Bayesian Bootstrap GDM (BBGDM) also provides confidence intervals but does not incorporate the knowledge of ecological priors. Therefore, this study aimed to propose a Bayesian Generalized Dissimilarity Model (BGDM) that integrated ecological priors such as non-negative regression coefficients into a fully Bayesian framework. Hamiltonian Monte Carlo (HMC) was used for efficient posterior sampling. The results showed that BGDM improved both uncertainty quantification and model interpretability. It was further applied to analyze the marine biodiversity patterns in the Lesser Sunda Islands to show more robust responses to environmental gradients compared to GDM and BBGDM.

Abstract Image

海洋生物多样性分析的贝叶斯广义不相似模型
海洋生物多样性对海洋生态系统和全球生态服务至关重要。利用广义不相似度模型(GDM)对beta多样性指数进行建模可以评估生物多样性的空间变化,该模型通过i样条曲线捕捉物种-环境的非线性关系,但缺乏区间估计。贝叶斯Bootstrap GDM (BBGDM)也提供置信区间,但不包含生态先验知识。因此,本研究旨在提出一个将非负回归系数等生态先验因素整合到完全贝叶斯框架中的贝叶斯广义不相似模型(BGDM)。采用哈密顿蒙特卡罗(HMC)进行有效的后验抽样。结果表明,BGDM提高了不确定性量化和模型可解释性。应用该模型对小巽他群岛的海洋生物多样性格局进行了分析,结果表明该模型对环境梯度的响应比GDM和BBGDM更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信