An integrated, tiered microplastic workflow, supporting rapid broadscale detection options

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-08-05 DOI:10.1016/j.mex.2025.103536
Samantha K Lynch , Colin L Johnson , Shivanesh Rao , Jaimie Loa-Kum-Cheung , Edwina L Foulsham , Alessandra L Suzzi , Lachlan Hill , Neil Doszpot , Rajitha Athukorala , Uthpala Pinto , Keegan Vickers , Maddison Carbery , Marina F.M. Santana
{"title":"An integrated, tiered microplastic workflow, supporting rapid broadscale detection options","authors":"Samantha K Lynch ,&nbsp;Colin L Johnson ,&nbsp;Shivanesh Rao ,&nbsp;Jaimie Loa-Kum-Cheung ,&nbsp;Edwina L Foulsham ,&nbsp;Alessandra L Suzzi ,&nbsp;Lachlan Hill ,&nbsp;Neil Doszpot ,&nbsp;Rajitha Athukorala ,&nbsp;Uthpala Pinto ,&nbsp;Keegan Vickers ,&nbsp;Maddison Carbery ,&nbsp;Marina F.M. Santana","doi":"10.1016/j.mex.2025.103536","DOIUrl":null,"url":null,"abstract":"<div><div>With growing concerns regarding microplastic pollution, there is an urgent need to improve understanding of their presence, distribution, and environmental impacts. This necessitates more coordinated and harmonised large-scale microplastic monitoring initiatives. However, such assessments are traditionally expensive, labour-intensive, and hindered by a lack of standardised sampling and analytical protocols, which impede rapid, yet accurate identification of microplastic sources and ecological risks. To improve environmental microplastic contamination estimates, this study proposes a rapid, cost-effective, and bulk-processing approach within a criteria-driven Tiered Microplastics Workflow (TMW). This approach enables the efficient quantification of microplastic contamination in estuarine surface waters, offering adaptable levels of analytical resolution, that is scalable for environmental monitoring. Key features of the TMW include:<ul><li><span>•</span><span><div><strong>Streamlined processing</strong>: sieving, digestion, density separation, vacuum degassing, size-classed filtration, Nile Red staining, and automated fluorescent particle counts via a Python script, enabling 24 samples to be processed in five days.</div></span></li><li><span>•</span><span><div><strong>Rapid Count Method:</strong> Enabling microplastic identification in broadscale monitoring within a 20 % error margin. Script-based microplastic counts align with FTIR results (R² = 0.83).</div></span></li><li><span>•</span><span><div><strong>Flexible resolution:</strong> Sample processing can be paused and switched to other analytical methods while maintaining data comparability ensuring data harmonisation.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103536"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With growing concerns regarding microplastic pollution, there is an urgent need to improve understanding of their presence, distribution, and environmental impacts. This necessitates more coordinated and harmonised large-scale microplastic monitoring initiatives. However, such assessments are traditionally expensive, labour-intensive, and hindered by a lack of standardised sampling and analytical protocols, which impede rapid, yet accurate identification of microplastic sources and ecological risks. To improve environmental microplastic contamination estimates, this study proposes a rapid, cost-effective, and bulk-processing approach within a criteria-driven Tiered Microplastics Workflow (TMW). This approach enables the efficient quantification of microplastic contamination in estuarine surface waters, offering adaptable levels of analytical resolution, that is scalable for environmental monitoring. Key features of the TMW include:
  • Streamlined processing: sieving, digestion, density separation, vacuum degassing, size-classed filtration, Nile Red staining, and automated fluorescent particle counts via a Python script, enabling 24 samples to be processed in five days.
  • Rapid Count Method: Enabling microplastic identification in broadscale monitoring within a 20 % error margin. Script-based microplastic counts align with FTIR results (R² = 0.83).
  • Flexible resolution: Sample processing can be paused and switched to other analytical methods while maintaining data comparability ensuring data harmonisation.

Abstract Image

集成的、分层的微塑料工作流程,支持快速的大规模检测选项
随着人们对微塑料污染的日益关注,迫切需要提高对它们的存在、分布和环境影响的了解。这需要更加协调和统一的大规模微塑料监测举措。然而,这种评估传统上是昂贵的,劳动密集型的,并且受到缺乏标准化采样和分析协议的阻碍,这阻碍了对微塑料来源和生态风险的快速而准确的识别。为了提高对环境微塑料污染的估计,本研究提出了一种快速、具有成本效益的批量处理方法,该方法是标准驱动的分层微塑料工作流程(TMW)。这种方法能够有效地量化河口地表水中的微塑料污染,提供可适应的分析分辨率水平,可扩展用于环境监测。•流线型处理:筛分,消化,密度分离,真空脱气,分级过滤,尼罗河红染色,并通过Python脚本自动荧光粒子计数,使24个样品在5天内处理。•快速计数方法:在大规模监测中实现微塑料识别,误差范围在20%以内。基于脚本的微塑料计数与FTIR结果一致(R²= 0.83)。灵活的分辨率:样品处理可以暂停并切换到其他分析方法,同时保持数据可比性,确保数据协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信