Outlet tube effects on cavitation cloud dynamics and erosion in self-excited waterjets

IF 3.3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Yan Pan , Zhuoliang Yu , Leonardo P. Chamorro , Fei Ma , Tengfei Cai
{"title":"Outlet tube effects on cavitation cloud dynamics and erosion in self-excited waterjets","authors":"Yan Pan ,&nbsp;Zhuoliang Yu ,&nbsp;Leonardo P. Chamorro ,&nbsp;Fei Ma ,&nbsp;Tengfei Cai","doi":"10.1016/j.expthermflusci.2025.111573","DOIUrl":null,"url":null,"abstract":"<div><div>Using high-speed imaging and three-dimensional surface morphology analysis, we examined the cavitation cloud dynamics and erosion characteristics of self-excited pulsating cavitating waterjets. Erosion experiments on aluminum specimens were conducted to evaluate the influence of varying outlet tube diameters and lengths on the waterjet’s performance. Mass loss measurements revealed that the erosion capability increased approximately threefold under the optimal outlet tube configuration. Proper Orthogonal Decomposition (POD) of high-speed snapshots identified distinct primary and secondary shedding modes driven by passive acoustic excitation. The presence of an outlet tube was found to enhance the volume and development of the primary cavitation cloud while facilitating the merging of secondary and primary modes. This mode-specific structural evolution leads to a synergistic amplification of cavitation cloud intensity, which governs the enhancement of erosion capacity.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"170 ","pages":"Article 111573"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725001670","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using high-speed imaging and three-dimensional surface morphology analysis, we examined the cavitation cloud dynamics and erosion characteristics of self-excited pulsating cavitating waterjets. Erosion experiments on aluminum specimens were conducted to evaluate the influence of varying outlet tube diameters and lengths on the waterjet’s performance. Mass loss measurements revealed that the erosion capability increased approximately threefold under the optimal outlet tube configuration. Proper Orthogonal Decomposition (POD) of high-speed snapshots identified distinct primary and secondary shedding modes driven by passive acoustic excitation. The presence of an outlet tube was found to enhance the volume and development of the primary cavitation cloud while facilitating the merging of secondary and primary modes. This mode-specific structural evolution leads to a synergistic amplification of cavitation cloud intensity, which governs the enhancement of erosion capacity.
自激水射流出口管对空化云动力学和冲蚀的影响
利用高速成像和三维表面形貌分析,研究了自激脉动空化水射流的空化云动力学和侵蚀特性。在铝试件上进行了冲蚀试验,研究了不同出口管径和长度对水射流性能的影响。质量损失测量表明,在最佳出口管配置下,侵蚀能力增加了约三倍。采用正交分解(POD)对高速快照进行分析,确定了被动声激励下不同的初级和次级脱落模式。研究发现,出口管的存在增加了初级空化云的体积和发展,同时促进了次级和初级模式的合并。这种特定模式的结构演化导致了空化云强度的协同放大,从而控制了侵蚀能力的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信