Xinru Chen PhD , Yao Ding PhD , Julius Weng MD , Carol C. Wu MD , Yao Zhao PhD , Angela Sobremonte BS , Mustefa Mohammedsaid MS , Zhan Xu PhD , Xiaodong Zhang PhD , Joshua S. Niedzielski PhD , Sanjay S. Shete PhD , Laurence E. Court PhD , Zhongxing Liao MD , Jihong Wang PhD , Ergys Subashi PhD , Percy P. Lee MD , Jinzhong Yang PhD
{"title":"Deep Learning-Based Cardiac Chamber Segmentation in Magnetic Resonance-Guided Adaptive Radiation Therapy","authors":"Xinru Chen PhD , Yao Ding PhD , Julius Weng MD , Carol C. Wu MD , Yao Zhao PhD , Angela Sobremonte BS , Mustefa Mohammedsaid MS , Zhan Xu PhD , Xiaodong Zhang PhD , Joshua S. Niedzielski PhD , Sanjay S. Shete PhD , Laurence E. Court PhD , Zhongxing Liao MD , Jihong Wang PhD , Ergys Subashi PhD , Percy P. Lee MD , Jinzhong Yang PhD","doi":"10.1016/j.adro.2025.101845","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Accurate cardiac chamber segmentation is crucial for improving cardiac sparing in magnetic resonance (MR)-guided adaptive radiation therapy, especially in patients at risk for radiation-induced cardiotoxicity. Here, we developed and evaluated automatic segmentation models for cardiac chambers that use daily MR images acquired on a 1.5-T MR-Linac system.</div></div><div><h3>Methods and Materials</h3><div>Twenty healthy volunteers underwent daily MR scanning on a 1.5-T MR-Linac, with 2 radial sequences: T2/T1 3DVaneXD balanced fast field echo with spectral attenuated inversion recovery (bFFE-SPAIR) and T1 3DVaneXD mDixon. Three flip angles were tested for each sequence to determine optimal image quality for chamber segmentation. Full-resolution 3D nnU-Net models were trained for the following: (1) bFFE-SPAIR (bFFE model); (2) T1 mDixon (mDixon model); and (3) both sequences (hybrid model). Models were evaluated based on Dice similarity coefficient (DSC) and mean surface distance against manual contours. Clinical acceptance of the automatic segmentation was assessed with a 5-point Likert scale. An in-silico planning study was performed to assess cardiac chamber sparing during plan adaptation.</div></div><div><h3>Results</h3><div>The average contrast-to-noise ratios in bFFE-SPAIR were 8.7 (20°), 34.2 (50°), and 37.3 (80°); for T1 mDixon, these values were 3.6 (5°), 5.9 (10°), and 4.9 (20°). The bFFE model achieved the highest segmentation performance (average DSC 0.85 ± 0.05 and mean surface distance 2.2 ± 0.6 mm). The T1 mDixon sequence, despite lower contrast-to-noise ratios, provided similar segmentation accuracy (DSC 0.83 ± 0.06). A hybrid model combining both sequences showed no significant improvement over the bFFE model. Clinical evaluation indicated that 95% of the autosegmented contours from the bFFE model were acceptable for clinical use (score ≥4). Adaptive plan greatly reduced individual cardiac chamber dose while maintaining similar target coverage.</div></div><div><h3>Conclusions</h3><div>This study demonstrated the feasibility of using bFFE-SPAIR and T1 mDixon sequences to accurately segment cardiac chambers on a 1.5-T MR-Linac. These models offer potential for improved cardiac sparing in MR-guided adaptive radiation therapy.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"10 9","pages":"Article 101845"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109425001320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Accurate cardiac chamber segmentation is crucial for improving cardiac sparing in magnetic resonance (MR)-guided adaptive radiation therapy, especially in patients at risk for radiation-induced cardiotoxicity. Here, we developed and evaluated automatic segmentation models for cardiac chambers that use daily MR images acquired on a 1.5-T MR-Linac system.
Methods and Materials
Twenty healthy volunteers underwent daily MR scanning on a 1.5-T MR-Linac, with 2 radial sequences: T2/T1 3DVaneXD balanced fast field echo with spectral attenuated inversion recovery (bFFE-SPAIR) and T1 3DVaneXD mDixon. Three flip angles were tested for each sequence to determine optimal image quality for chamber segmentation. Full-resolution 3D nnU-Net models were trained for the following: (1) bFFE-SPAIR (bFFE model); (2) T1 mDixon (mDixon model); and (3) both sequences (hybrid model). Models were evaluated based on Dice similarity coefficient (DSC) and mean surface distance against manual contours. Clinical acceptance of the automatic segmentation was assessed with a 5-point Likert scale. An in-silico planning study was performed to assess cardiac chamber sparing during plan adaptation.
Results
The average contrast-to-noise ratios in bFFE-SPAIR were 8.7 (20°), 34.2 (50°), and 37.3 (80°); for T1 mDixon, these values were 3.6 (5°), 5.9 (10°), and 4.9 (20°). The bFFE model achieved the highest segmentation performance (average DSC 0.85 ± 0.05 and mean surface distance 2.2 ± 0.6 mm). The T1 mDixon sequence, despite lower contrast-to-noise ratios, provided similar segmentation accuracy (DSC 0.83 ± 0.06). A hybrid model combining both sequences showed no significant improvement over the bFFE model. Clinical evaluation indicated that 95% of the autosegmented contours from the bFFE model were acceptable for clinical use (score ≥4). Adaptive plan greatly reduced individual cardiac chamber dose while maintaining similar target coverage.
Conclusions
This study demonstrated the feasibility of using bFFE-SPAIR and T1 mDixon sequences to accurately segment cardiac chambers on a 1.5-T MR-Linac. These models offer potential for improved cardiac sparing in MR-guided adaptive radiation therapy.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.