Michael J. Kastoryano, Lasse B. Kristensen, Chi-Fang Chen, Andras Gilyén
{"title":"A little bit of self-correction","authors":"Michael J. Kastoryano, Lasse B. Kristensen, Chi-Fang Chen, Andras Gilyén","doi":"10.22331/q-2025-08-04-1820","DOIUrl":null,"url":null,"abstract":"We investigate the emergence of stable subspaces in the low-temperature quantum thermal dynamics of finite spin chains. Our analysis reveals the existence of effective decoherence-free qudit subspaces, persisting for timescales exponential in $\\beta$. Surprisingly, the appearance of metastable subspaces is not directly related to the entanglement structure of the ground state(s). Rather, they arise from symmetry relations in low-lying excited states. Despite their stability within a 'phase', practical realization of stable qubits is hindered by susceptibility to symmetry-breaking perturbations. This work highlights that there can be non-trivial quantum behavior in the thermal dynamics of noncommuting many body models, and opens the door to more extensive studies of self-correction in such systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"731 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-04-1820","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the emergence of stable subspaces in the low-temperature quantum thermal dynamics of finite spin chains. Our analysis reveals the existence of effective decoherence-free qudit subspaces, persisting for timescales exponential in $\beta$. Surprisingly, the appearance of metastable subspaces is not directly related to the entanglement structure of the ground state(s). Rather, they arise from symmetry relations in low-lying excited states. Despite their stability within a 'phase', practical realization of stable qubits is hindered by susceptibility to symmetry-breaking perturbations. This work highlights that there can be non-trivial quantum behavior in the thermal dynamics of noncommuting many body models, and opens the door to more extensive studies of self-correction in such systems.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.