Temporal consistency-aware network for renal artery segmentation in X-ray angiography.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Botao Yang, Chunming Li, Simone Fezzi, Zehao Fan, Runguo Wei, Yankai Chen, Domenico Tavella, Flavio L Ribichini, Su Zhang, Faisal Sharif, Shengxian Tu
{"title":"Temporal consistency-aware network for renal artery segmentation in X-ray angiography.","authors":"Botao Yang, Chunming Li, Simone Fezzi, Zehao Fan, Runguo Wei, Yankai Chen, Domenico Tavella, Flavio L Ribichini, Su Zhang, Faisal Sharif, Shengxian Tu","doi":"10.1007/s11548-025-03486-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos.</p><p><strong>Methods: </strong>Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training.</p><p><strong>Results: </strong>We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods.</p><p><strong>Conclusion: </strong>We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03486-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos.

Methods: Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training.

Results: We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods.

Conclusion: We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.

x线血管造影中肾动脉分割的时间一致性感知网络。
目的:从x线血管造影视频中准确分割肾动脉对于评估肾交感神经支配(RDN)手术至关重要,但由于对比剂浓度和跨框架血管形态的动态变化,仍然具有挑战性。本研究的目的是提出TCA-Net,这是一种深度学习模型,通过利用血管造影视频中的本地和全局上下文信息来提高分割一致性。方法:我们的方法采用了一种新的深度学习框架,该框架包含两个关键模块:局部时间窗口血管增强模块和全局血管细化模块(GVR)。局部模块融合了多尺度时空特征,以改善当前框架中船舶的语义表示,而GVR模块集成了解耦关注策略(视频级和对象级关注)和门控机制,以细化全局船舶信息并消除冗余。为了进一步提高分割一致性,在训练过程中引入了时间感知一致性损失函数。结果:我们使用195个肾动脉血管造影序列来评估我们的模型,并在来自44名患者的外部数据集上进行了测试。结果表明,TCA-Net分割肾动脉的f1得分为0.8678,优于现有的最先进的分割方法。结论:我们提出了一种基于深度学习的TCA-Net模型,该模型显著提高了肾动脉血管造影视频的分割一致性。通过有效地利用本地和全球时间上下文信息,TCA-Net优于当前方法,并为评估RDN过程提供了可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信