{"title":"A novel analytical framework for noninvasive estimation of left ventricular pressure and pressure-volume loops.","authors":"Coskun Bilgi, Niema M Pahlevan","doi":"10.1088/1361-6579/adf6fd","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The left ventricle (LV) pressure-volume (PV) loop provides comprehensive characteristic information into ventricular mechanics, aiding in the assessment of systolic and diastolic function. However, its routine clinical application is limited due to the invasiveness of conventional LV catheterization procedures. This study introduces a novel analytical framework for estimating LV pressure (LVP) waveforms noninvasively, using carotid pressure waveforms and routine cardiac imaging.<i>Approach.</i>The proposed method consists of a five-step analytical approach that integrates physical and physiological LV-aortic coupling relationships with a novel ventricular filling model. To assess the sensitivity and effectiveness of our method, we applied it on a clinical sample of 77 people (42% female), comprising healthy volunteers and heart failure (HF) patients, and analyzed the reconstructed PV-loops for key hemodynamic metrics.<i>Main results.</i>The proposed method robustly captured key hemodynamic changes associated with HF patients, including elevated LV end-diastolic pressure (<i>p</i>< 0.01), loss of inotropy (<i>p</i>< 0.001), and impaired ventricular efficiency (<i>p</i>< 0.001). Additionally, HF patients exhibited significantly smaller stroke work (<i>p</i>< 0.001), mean external power (<i>p</i>< 0.01), and contractility (<i>p</i>< 0.001) compared to the control group. These results align well with established clinical observations for HF, demonstrating the method's ability to detect pathological ventricular modifications.<i>Significance.</i>The proposed noninvasive LVP estimation method provides physiologically and clinically relevant PV-loop metrics without requiring invasive catheterization. By reliably capturing ventricular dysfunction in HF patients, this approach offers a promising alternative for noninvasive cardiac assessment. Its ability to enable routine evaluation of LV mechanics has the potential to improve HF diagnosis and therapeutic management, facilitating earlier intervention and more personalized treatment strategies.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adf6fd","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.The left ventricle (LV) pressure-volume (PV) loop provides comprehensive characteristic information into ventricular mechanics, aiding in the assessment of systolic and diastolic function. However, its routine clinical application is limited due to the invasiveness of conventional LV catheterization procedures. This study introduces a novel analytical framework for estimating LV pressure (LVP) waveforms noninvasively, using carotid pressure waveforms and routine cardiac imaging.Approach.The proposed method consists of a five-step analytical approach that integrates physical and physiological LV-aortic coupling relationships with a novel ventricular filling model. To assess the sensitivity and effectiveness of our method, we applied it on a clinical sample of 77 people (42% female), comprising healthy volunteers and heart failure (HF) patients, and analyzed the reconstructed PV-loops for key hemodynamic metrics.Main results.The proposed method robustly captured key hemodynamic changes associated with HF patients, including elevated LV end-diastolic pressure (p< 0.01), loss of inotropy (p< 0.001), and impaired ventricular efficiency (p< 0.001). Additionally, HF patients exhibited significantly smaller stroke work (p< 0.001), mean external power (p< 0.01), and contractility (p< 0.001) compared to the control group. These results align well with established clinical observations for HF, demonstrating the method's ability to detect pathological ventricular modifications.Significance.The proposed noninvasive LVP estimation method provides physiologically and clinically relevant PV-loop metrics without requiring invasive catheterization. By reliably capturing ventricular dysfunction in HF patients, this approach offers a promising alternative for noninvasive cardiac assessment. Its ability to enable routine evaluation of LV mechanics has the potential to improve HF diagnosis and therapeutic management, facilitating earlier intervention and more personalized treatment strategies.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.