Orchestrating function: Concerted dynamics, allostery, and catalysis in protein tyrosine phosphatases

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Virgil A. Woods , Shivani Sharma , Alexis M. Lemberikman , Daniel A. Keedy
{"title":"Orchestrating function: Concerted dynamics, allostery, and catalysis in protein tyrosine phosphatases","authors":"Virgil A. Woods ,&nbsp;Shivani Sharma ,&nbsp;Alexis M. Lemberikman ,&nbsp;Daniel A. Keedy","doi":"10.1016/j.sbi.2025.103125","DOIUrl":null,"url":null,"abstract":"<div><div>Protein tyrosine phosphatases (PTPs) are a family of enzymes that play critical roles in intracellular signaling and regulation. PTPs are conformationally dynamic, exhibiting motions of catalytic loops and additional regions of the structurally conserved catalytic domain. However, many questions remain about how dynamics contribute to catalysis and allostery in PTPs, how these behaviors vary among evolutionarily divergent PTP family members, and how mutations and ligands reshape dynamics to modulate PTP function. Recently, our understanding in these areas has expanded significantly, thanks to novel applications of existing methods and emergence of new approaches in structural biology and biophysics. Here we review exciting advances in this realm from the last few years. We organize our commentary both by experimental and computational methodologies, including solution techniques, avant-garde crystallography, molecular dynamics simulations, and bioinformatics, and also by scientific focus, including regulatory mechanisms, mutations and protein engineering, and small-molecule ligands such as allosteric modulators.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103125"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001435","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein tyrosine phosphatases (PTPs) are a family of enzymes that play critical roles in intracellular signaling and regulation. PTPs are conformationally dynamic, exhibiting motions of catalytic loops and additional regions of the structurally conserved catalytic domain. However, many questions remain about how dynamics contribute to catalysis and allostery in PTPs, how these behaviors vary among evolutionarily divergent PTP family members, and how mutations and ligands reshape dynamics to modulate PTP function. Recently, our understanding in these areas has expanded significantly, thanks to novel applications of existing methods and emergence of new approaches in structural biology and biophysics. Here we review exciting advances in this realm from the last few years. We organize our commentary both by experimental and computational methodologies, including solution techniques, avant-garde crystallography, molecular dynamics simulations, and bioinformatics, and also by scientific focus, including regulatory mechanisms, mutations and protein engineering, and small-molecule ligands such as allosteric modulators.
协调功能:蛋白酪氨酸磷酸酶的协调动力学、变构和催化作用。
蛋白酪氨酸磷酸酶(PTPs)是一个在细胞内信号传导和调控中起关键作用的酶家族。PTPs是构象动态的,表现出催化环的运动和结构保守的催化域的附加区域。然而,关于动力学如何促进PTP的催化和变构,这些行为在进化不同的PTP家族成员中如何变化,以及突变和配体如何重塑动力学以调节PTP功能,仍然存在许多问题。最近,由于结构生物学和生物物理学中现有方法的新应用和新方法的出现,我们对这些领域的理解有了显著的扩展。在这里,我们回顾了过去几年在这一领域取得的令人兴奋的进展。我们通过实验和计算方法组织我们的评论,包括溶液技术,前卫晶体学,分子动力学模拟和生物信息学,以及科学焦点,包括调节机制,突变和蛋白质工程,以及小分子配体,如变构调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信