{"title":"DiffNEG: A Differentiable Rasterization Framework for Online Aiming Optimization in Solar Power Tower Systems","authors":"Cangping Zheng, Xiaoxia Lin, Dongshuai Li, Yuhong Zhao, Jieqing Feng","doi":"10.1111/cgf.70166","DOIUrl":null,"url":null,"abstract":"<p>Inverse rendering aims to infer scene parameters from observed images. In Solar Power Tower (SPT) systems, this corresponds to an aiming optimization problem—adjusting heliostats' orientations to shape the radiative flux density distribution (RFDD) on the receiver to conform to a desired distribution. The SPT system is widely favored in the field of renewable energy, where aiming optimization is crucial for ensuring its thermal efficiency and safety. However, traditional aiming optimization methods are inefficient and fail to meet online demands. In this paper, a novel optimization approach, DiffNEG, is proposed. DiffNEG introduces a differentiable rasterization method to model the reflected radiative flux of each heliostat as an elliptical Gaussian distribution. It leverages data-driven techniques to enhance simulation accuracy and employs automatic differentiation combined with gradient descent to achieve online, gradient-guided optimization in a continuous solution space. Experiments on a real large-scale heliostat field with nearly 30,000 heliostats demonstrate that DiffNEG can optimize within 10 seconds, improving efficiency by one order of magnitude compared to the latest DiffMCRT method and by three orders of magnitude compared to traditional heuristic methods, while also exhibiting superior robustness under both steady and transient state.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70166","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Inverse rendering aims to infer scene parameters from observed images. In Solar Power Tower (SPT) systems, this corresponds to an aiming optimization problem—adjusting heliostats' orientations to shape the radiative flux density distribution (RFDD) on the receiver to conform to a desired distribution. The SPT system is widely favored in the field of renewable energy, where aiming optimization is crucial for ensuring its thermal efficiency and safety. However, traditional aiming optimization methods are inefficient and fail to meet online demands. In this paper, a novel optimization approach, DiffNEG, is proposed. DiffNEG introduces a differentiable rasterization method to model the reflected radiative flux of each heliostat as an elliptical Gaussian distribution. It leverages data-driven techniques to enhance simulation accuracy and employs automatic differentiation combined with gradient descent to achieve online, gradient-guided optimization in a continuous solution space. Experiments on a real large-scale heliostat field with nearly 30,000 heliostats demonstrate that DiffNEG can optimize within 10 seconds, improving efficiency by one order of magnitude compared to the latest DiffMCRT method and by three orders of magnitude compared to traditional heuristic methods, while also exhibiting superior robustness under both steady and transient state.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.