Inhibition Effects of Patchouli Alcohol, Carvacrol, p-Cymene, Eucalyptol and Their Formulations Against Influenza Virus Pneumonia Through TLR4/NF-κB/NLRP3 Signaling Pathway

IF 3.3 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruilin Lv, Yi Li, Yinming Zhao, Qi Zhang, Xiaofang Wu, Xingyu Zhao, Linze Li, Ruying Tang, Jianjun Zhang, Linyuan Wang
{"title":"Inhibition Effects of Patchouli Alcohol, Carvacrol, p-Cymene, Eucalyptol and Their Formulations Against Influenza Virus Pneumonia Through TLR4/NF-κB/NLRP3 Signaling Pathway","authors":"Ruilin Lv,&nbsp;Yi Li,&nbsp;Yinming Zhao,&nbsp;Qi Zhang,&nbsp;Xiaofang Wu,&nbsp;Xingyu Zhao,&nbsp;Linze Li,&nbsp;Ruying Tang,&nbsp;Jianjun Zhang,&nbsp;Linyuan Wang","doi":"10.1111/cbdd.70150","DOIUrl":null,"url":null,"abstract":"<p>As a kind of drug mostly used historically to treat epidemics, aromatic botanicals have volatile oils as active components. The study aims to evaluate the anti-influenza viral pneumonia effects of volatile monomers patchouli alcohol (PA), carvacrol (CV), <i>p-</i>Cymene (PC), eucalyptol (EC) and their formulations from various aspects through the influenza virus A/PR/8/34 (H1N1) infection experiment in vivo and in vitro and carry out in-depth studies on the anti-inflammatory mechanisms. In this study, we found that all four volatile monomers mentioned above could exert antiviral effects by suppressing pulmonary viral load and lung index and improving lung lesions in mice with influenza pneumonia. In addition, elevated levels of cytokines and chemokines in the serum were suppressed, the proportion of T-lymphocytes in the peripheral blood was altered, and antioxidative stress indices were improved, whose mechanism of action related to anti-inflammation, possibly acting on the Toll-Like Receptor 4/Nuclear Factor-κB/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (TLR4/NF-κB/NLRP3) pathway. The study provides an experimental basis for volatile monomers and their formulations of aromatic herbs for treating influenza virus pneumonia.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"106 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a kind of drug mostly used historically to treat epidemics, aromatic botanicals have volatile oils as active components. The study aims to evaluate the anti-influenza viral pneumonia effects of volatile monomers patchouli alcohol (PA), carvacrol (CV), p-Cymene (PC), eucalyptol (EC) and their formulations from various aspects through the influenza virus A/PR/8/34 (H1N1) infection experiment in vivo and in vitro and carry out in-depth studies on the anti-inflammatory mechanisms. In this study, we found that all four volatile monomers mentioned above could exert antiviral effects by suppressing pulmonary viral load and lung index and improving lung lesions in mice with influenza pneumonia. In addition, elevated levels of cytokines and chemokines in the serum were suppressed, the proportion of T-lymphocytes in the peripheral blood was altered, and antioxidative stress indices were improved, whose mechanism of action related to anti-inflammation, possibly acting on the Toll-Like Receptor 4/Nuclear Factor-κB/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (TLR4/NF-κB/NLRP3) pathway. The study provides an experimental basis for volatile monomers and their formulations of aromatic herbs for treating influenza virus pneumonia.

Abstract Image

广藿香醇、香芹酚、对伞花素、桉叶精油及其制剂通过TLR4/NF-κB/NLRP3信号通路对流感病毒肺炎的抑制作用
芳香植物药是历史上常用的一种治疗流行病的药物,其有效成分为挥发油。本研究旨在通过流感病毒A/PR/8/34 (H1N1)的体内外感染实验,从多个方面评价挥发性单体广藿香醇(PA)、香芹醇(CV)、对花香烃(PC)、桉树醇(EC)及其制剂的抗流感病毒性肺炎作用,并对其抗炎机制进行深入研究。在本研究中,我们发现上述四种挥发性单体均可通过抑制流感肺炎小鼠肺病毒载量和肺指数以及改善肺病变来发挥抗病毒作用。此外,抑制血清中细胞因子和趋化因子水平升高,改变外周血t淋巴细胞比例,改善抗氧化应激指标,其作用机制与抗炎有关,可能作用于toll样受体4/核因子-κB/核苷酸结合域富亮氨酸重复和含pyrin结构域受体3 (TLR4/NF-κB/NLRP3)通路。本研究为治疗流感病毒性肺炎的中药挥发性单体及其配方的研究提供了实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信