{"title":"Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions","authors":"Alain Hecq, Marie Ternes, Ines Wilms","doi":"10.1002/for.3277","DOIUrl":null,"url":null,"abstract":"<p>Reverse Unrestricted MIxed DAta Sampling (RU-MIDAS) regressions are used to model high-frequency responses by means of low-frequency variables. However, due to the periodic structure of RU-MIDAS regressions, the dimensionality grows quickly if the frequency mismatch between the high- and low-frequency variables is large. Additionally, the number of high-frequency observations available for estimation decreases. We propose to counteract this reduction in sample size by pooling the high-frequency coefficients and further reducing the dimensionality through a sparsity-inducing convex regularizer that accounts for the temporal ordering among the different lags. To this end, the regularizer prioritizes the inclusion of lagged coefficients according to the recency of the information they contain. We demonstrate the proposed method on two empirical applications, one on realized volatility forecasting with macroeconomic data and another on demand forecasting for a bicycle-sharing system with ridership data on other transportation types.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 6","pages":"1946-1968"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3277","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3277","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Reverse Unrestricted MIxed DAta Sampling (RU-MIDAS) regressions are used to model high-frequency responses by means of low-frequency variables. However, due to the periodic structure of RU-MIDAS regressions, the dimensionality grows quickly if the frequency mismatch between the high- and low-frequency variables is large. Additionally, the number of high-frequency observations available for estimation decreases. We propose to counteract this reduction in sample size by pooling the high-frequency coefficients and further reducing the dimensionality through a sparsity-inducing convex regularizer that accounts for the temporal ordering among the different lags. To this end, the regularizer prioritizes the inclusion of lagged coefficients according to the recency of the information they contain. We demonstrate the proposed method on two empirical applications, one on realized volatility forecasting with macroeconomic data and another on demand forecasting for a bicycle-sharing system with ridership data on other transportation types.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.