Revolutionizing Caffeic Acid Production: Advanced Microbial Metabolic Engineering and Synthetic Biology Approaches

IF 3.1 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Jintao Lu, Beining Wang, Xiqiang Liu, Jung-Kul Lee, Vipin Chandra Kalia, Chunjie Gong
{"title":"Revolutionizing Caffeic Acid Production: Advanced Microbial Metabolic Engineering and Synthetic Biology Approaches","authors":"Jintao Lu,&nbsp;Beining Wang,&nbsp;Xiqiang Liu,&nbsp;Jung-Kul Lee,&nbsp;Vipin Chandra Kalia,&nbsp;Chunjie Gong","doi":"10.1002/biot.70091","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Caffeic acid, a high-value natural phenolic compound synthesized through plant metabolism, plays a critical role in producing phenylpropanoid derivatives and serves as a direct precursor to several key phenolic acids. As a food additive and medicine, caffeic acid has garnered significant attention for its potential in various applications. Recent advances in synthetic biology and metabolic engineering have enabled its biosynthesis via microbial cell factories. This review summarizes five strategies for optimizing caffeic acid production: caffeic acid biosynthetic pathway, modification of metabolic pathway, systems biology and synthetic biology, cofactor engineering, and modular co-culture. However, caffeic acid production via microbial chassis faces bottlenecks such as limited precursor availability for biosynthesis, toxicity from metabolic intermediates, inefficient cofactor utilization, and over-reliance on conventional host microorganisms. Breaking through these bottlenecks by integrating the five strategies outlined is expected to further increase caffeic acid production.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Caffeic acid, a high-value natural phenolic compound synthesized through plant metabolism, plays a critical role in producing phenylpropanoid derivatives and serves as a direct precursor to several key phenolic acids. As a food additive and medicine, caffeic acid has garnered significant attention for its potential in various applications. Recent advances in synthetic biology and metabolic engineering have enabled its biosynthesis via microbial cell factories. This review summarizes five strategies for optimizing caffeic acid production: caffeic acid biosynthetic pathway, modification of metabolic pathway, systems biology and synthetic biology, cofactor engineering, and modular co-culture. However, caffeic acid production via microbial chassis faces bottlenecks such as limited precursor availability for biosynthesis, toxicity from metabolic intermediates, inefficient cofactor utilization, and over-reliance on conventional host microorganisms. Breaking through these bottlenecks by integrating the five strategies outlined is expected to further increase caffeic acid production.

革命咖啡酸生产:先进的微生物代谢工程和合成生物学方法
咖啡酸是一种通过植物代谢合成的高价值天然酚类化合物,在苯丙衍生物的生产中起着关键作用,是几种关键酚酸的直接前体。咖啡酸作为一种食品添加剂和药物,因其在各种应用方面的潜力而受到广泛关注。合成生物学和代谢工程的最新进展使其能够通过微生物细胞工厂进行生物合成。本文综述了优化咖啡酸生产的五种策略:咖啡酸生物合成途径、代谢途径修饰、系统生物学和合成生物学、辅因子工程和模块化共培养。然而,通过微生物底盘生产咖啡酸面临着诸如生物合成前体可用性有限,代谢中间体毒性,辅助因子利用效率低下以及过度依赖传统宿主微生物等瓶颈。通过整合概述的五种战略来突破这些瓶颈,预计将进一步增加咖啡酸的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信