Julia B. Ejarque , Anna C.F. Couto , Thábata Matos , Evandro L. Duarte , M. Teresa Lamy , Julio H.K. Rozenfeld
{"title":"Effect of disialoganglioside GD3 on the subgel, gel and fluid phases of cationic DODAB vesicles","authors":"Julia B. Ejarque , Anna C.F. Couto , Thábata Matos , Evandro L. Duarte , M. Teresa Lamy , Julio H.K. Rozenfeld","doi":"10.1016/j.bpc.2025.107503","DOIUrl":null,"url":null,"abstract":"<div><div>GD3 is a disialoganglioside overexpressed in several types of cancer cells. The synthetic cationic lipid DODAB has been successfully employed as a vaccine adjuvant, and would be suitable to enhance GD3 immunogenicity. Here, mixed dispersions of GD3 and DODAB were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. GD3 is miscible with DODAB, and decreases the DODAB gel-fluid transition cooperativity. GD3 does not affect the temperature hysteresis between gel-fluid and fluid-gel transitions. GD3 does not affect the formation of a subgel phase in DODAB bilayers cooled below 15 °C. GD3 decreases the acyl chain packing of the DODAB subgel phase, which could explain the broad and shallow exothermic event between 5 °C and 20 °C that appears on thermograms of mixed dispersions. These results might contribute to the development of novel GD3-based cancer immunotherapies, including at the low temperatures involved in cold chain stability.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"326 ","pages":"Article 107503"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225001152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GD3 is a disialoganglioside overexpressed in several types of cancer cells. The synthetic cationic lipid DODAB has been successfully employed as a vaccine adjuvant, and would be suitable to enhance GD3 immunogenicity. Here, mixed dispersions of GD3 and DODAB were characterized by Differential Scanning Calorimetry (DSC) and Electron Paramagnetic Resonance (EPR) spectroscopy. GD3 is miscible with DODAB, and decreases the DODAB gel-fluid transition cooperativity. GD3 does not affect the temperature hysteresis between gel-fluid and fluid-gel transitions. GD3 does not affect the formation of a subgel phase in DODAB bilayers cooled below 15 °C. GD3 decreases the acyl chain packing of the DODAB subgel phase, which could explain the broad and shallow exothermic event between 5 °C and 20 °C that appears on thermograms of mixed dispersions. These results might contribute to the development of novel GD3-based cancer immunotherapies, including at the low temperatures involved in cold chain stability.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.