Taking advantage of biased proxies for forecast evaluation

IF 4 3区 经济学 Q1 ECONOMICS
Giuseppe Buccheri , Roberto Renò , Giorgio Vocalelli
{"title":"Taking advantage of biased proxies for forecast evaluation","authors":"Giuseppe Buccheri ,&nbsp;Roberto Renò ,&nbsp;Giorgio Vocalelli","doi":"10.1016/j.jeconom.2025.106068","DOIUrl":null,"url":null,"abstract":"<div><div>This paper rehabilitates biased proxies for the assessment of the predictive accuracy of competing forecasts. By relaxing the ubiquitous assumption of proxy unbiasedness adopted in the theoretical and empirical literature, we show how to optimally combine (possibly) biased proxies to maximize the probability of inferring the ranking that would be obtained using the true latent variable, a property that we dub proxy reliability. Our procedure still preserves the robustness of the loss function, in the sense of Patton (2011b), and allows testing for equal predictive accuracy, as in Diebold and Mariano (1995). We demonstrate the usefulness of the method with compelling empirical applications on GDP growth, financial market volatility forecasting, and sea surface temperature of the Niño 3.4 region.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106068"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001228","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper rehabilitates biased proxies for the assessment of the predictive accuracy of competing forecasts. By relaxing the ubiquitous assumption of proxy unbiasedness adopted in the theoretical and empirical literature, we show how to optimally combine (possibly) biased proxies to maximize the probability of inferring the ranking that would be obtained using the true latent variable, a property that we dub proxy reliability. Our procedure still preserves the robustness of the loss function, in the sense of Patton (2011b), and allows testing for equal predictive accuracy, as in Diebold and Mariano (1995). We demonstrate the usefulness of the method with compelling empirical applications on GDP growth, financial market volatility forecasting, and sea surface temperature of the Niño 3.4 region.
利用有偏代理进行预测评价
本文修复了有偏差的代理,以评估竞争预测的预测准确性。通过放宽理论和实证文献中普遍采用的代理无偏性假设,我们展示了如何最佳地组合(可能)有偏的代理,以最大限度地利用真实潜在变量推断排名的概率,我们称之为代理可靠性的属性。在Patton(2011)的意义上,我们的程序仍然保留了损失函数的鲁棒性,并允许测试相同的预测准确性,如Diebold和Mariano(1995)。我们通过对GDP增长、金融市场波动预测和Niño 3.4区域海面温度的实证应用证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信