A Localized Orthogonal Decomposition Method for Heterogeneous Stokes Problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Moritz Hauck, Alexei Lozinski
{"title":"A Localized Orthogonal Decomposition Method for Heterogeneous Stokes Problems","authors":"Moritz Hauck, Alexei Lozinski","doi":"10.1137/24m1704166","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1617-1641, August 2025. <br/> Abstract. In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the localized orthogonal decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a postprocessed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"69 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1704166","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1617-1641, August 2025.
Abstract. In this paper, we propose a multiscale method for heterogeneous Stokes problems. The method is based on the localized orthogonal decomposition (LOD) methodology and has approximation properties independent of the regularity of the coefficients. We apply the LOD to an appropriate reformulation of the Stokes problem, which allows us to construct exponentially decaying basis functions for the velocity approximation while using a piecewise constant pressure approximation. The exponential decay motivates a localization of the basis computation, which is essential for the practical realization of the method. We perform a rigorous a priori error analysis and prove optimal convergence rates for the velocity approximation and a postprocessed pressure approximation, provided that the supports of the basis functions are logarithmically increased with the desired accuracy. Numerical experiments support the theoretical results of this paper.
非均质Stokes问题的局部正交分解方法
SIAM数值分析杂志,第63卷,第4期,1617-1641页,2025年8月。摘要。本文提出了一种求解异构Stokes问题的多尺度方法。该方法基于局部正交分解(LOD)方法,具有与系数的正则性无关的近似性质。我们将LOD应用于Stokes问题的适当重新表述,这使我们能够在使用分段恒压近似的同时构建速度近似的指数衰减基函数。指数衰减促使基计算的局部化,这对该方法的实际实现至关重要。我们进行了严格的先验误差分析,并证明了速度近似和后处理压力近似的最佳收敛速率,前提是基函数的支持以所需的精度对数增加。数值实验支持了本文的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信