Uncovering Sequence and Structural Characteristics of Fungal Expansin-Related Proteins With Potential to Drive Substrate Targeting.

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anna Pohto, Taru Koitto, Deepika Dahiya, Alessandra Castro, Elizaveta Sidorova, Martina Huusela, Scott E Baker, Adrian Tsang, Emma Master
{"title":"Uncovering Sequence and Structural Characteristics of Fungal Expansin-Related Proteins With Potential to Drive Substrate Targeting.","authors":"Anna Pohto, Taru Koitto, Deepika Dahiya, Alessandra Castro, Elizaveta Sidorova, Martina Huusela, Scott E Baker, Adrian Tsang, Emma Master","doi":"10.1002/prot.70029","DOIUrl":null,"url":null,"abstract":"<p><p>Expansins loosen plant cell wall networks through disrupting non-covalent bonds between cellulose microfibrils and matrix polysaccharides. Whereas expansins were first discovered in plants, expansin-related proteins have since been identified in bacteria and fungi. The biological function of microbial expansins remains unclear; however, several studies have shown distinct binding preferences toward different structural polysaccharides. Earlier studies of bacterial expansin-related proteins uncovered sequence and structural features that correlate to substrate binding. Herein, 20 fungal expansin-related sequences were recombinantly produced in Komagataella phaffii, and the purified proteins were compared in terms of substrate binding to cellulosic and chitinous substrates. The impact of pH on the zeta potential of prioritized substrates was also measured, and Principal Component Analysis was performed to uncover correlations between protein characteristics (e.g., pI, hydrophobicity, surface charge distribution) and measured substrate binding preferences. Whereas acidic proteins with a predicted pI less than 5.0 preferentially bound to chitin, basic proteins with pI greater than 8.0 preferentially bound to xylan and xylan-containing fiber. Similar to many cellulases, binding to cellulose was correlated to relatively high aromatic amino acid content in the protein sequence and presence of a carbohydrate binding module (CBM), which in the case of expansins is a C-terminal CBM63. Whereas overall sequence characteristics could be correlated to substrate binding preference, the identity of amino acids occupying conserved positions that impact protein activity was better correlated with loosenin versus expansin classifications.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Expansins loosen plant cell wall networks through disrupting non-covalent bonds between cellulose microfibrils and matrix polysaccharides. Whereas expansins were first discovered in plants, expansin-related proteins have since been identified in bacteria and fungi. The biological function of microbial expansins remains unclear; however, several studies have shown distinct binding preferences toward different structural polysaccharides. Earlier studies of bacterial expansin-related proteins uncovered sequence and structural features that correlate to substrate binding. Herein, 20 fungal expansin-related sequences were recombinantly produced in Komagataella phaffii, and the purified proteins were compared in terms of substrate binding to cellulosic and chitinous substrates. The impact of pH on the zeta potential of prioritized substrates was also measured, and Principal Component Analysis was performed to uncover correlations between protein characteristics (e.g., pI, hydrophobicity, surface charge distribution) and measured substrate binding preferences. Whereas acidic proteins with a predicted pI less than 5.0 preferentially bound to chitin, basic proteins with pI greater than 8.0 preferentially bound to xylan and xylan-containing fiber. Similar to many cellulases, binding to cellulose was correlated to relatively high aromatic amino acid content in the protein sequence and presence of a carbohydrate binding module (CBM), which in the case of expansins is a C-terminal CBM63. Whereas overall sequence characteristics could be correlated to substrate binding preference, the identity of amino acids occupying conserved positions that impact protein activity was better correlated with loosenin versus expansin classifications.

揭示真菌扩张素相关蛋白的序列和结构特征,具有驱动底物靶向的潜力。
膨胀蛋白通过破坏纤维素微原纤维和基质多糖之间的非共价键来放松植物细胞壁网络。虽然扩张蛋白最初是在植物中发现的,但后来在细菌和真菌中发现了与扩张蛋白相关的蛋白质。微生物膨胀素的生物学功能尚不清楚;然而,一些研究表明不同结构的多糖具有不同的结合偏好。早期对细菌膨胀素相关蛋白的研究揭示了与底物结合相关的序列和结构特征。本文在Komagataella phaffii中重组产生了20个真菌扩张蛋白相关序列,并比较了纯化蛋白与纤维素和几丁质底物的结合情况。还测量了pH对优先底物的zeta电位的影响,并进行主成分分析以揭示蛋白质特征(例如pI,疏水性,表面电荷分布)与测量的底物结合偏好之间的相关性。预测pI小于5.0的酸性蛋白优先与几丁质结合,而pI大于8.0的碱性蛋白优先与木聚糖和含木聚糖纤维结合。与许多纤维素酶类似,与纤维素的结合与蛋白质序列中相对较高的芳香氨基酸含量和碳水化合物结合模块(CBM)的存在有关,在膨胀蛋白的情况下,碳水化合物结合模块是c端CBM63。虽然整体序列特征可能与底物结合偏好相关,但占据影响蛋白质活性的保守位置的氨基酸的身份与松散蛋白和扩张蛋白分类更好地相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信