Moving From Point-Based Analysis to Systems-Based Modeling: Knowledge Integration to Address Antimicrobial Resistance.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Bhavatharini Arun, Gauri G Rao
{"title":"Moving From Point-Based Analysis to Systems-Based Modeling: Knowledge Integration to Address Antimicrobial Resistance.","authors":"Bhavatharini Arun, Gauri G Rao","doi":"10.1002/psp4.70092","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing antibiotic therapy requires a holistic bench-to-bedside approach with interdisciplinary collaboration between pharmacologists, clinicians, microbiologists, and computational scientists. Novel experimental models provide insights into drug-pathogen interactions within complex host environments, while multiomics data provide details of the molecular mechanisms shaping bacterial responses. Pharmacometrics and machine learning can be used to integrate these insights into in silico models. This perspective highlights how these approaches-when used effectively and often together to build a systems-level view-can inform drug development and improve clinical decision-making, ensuring the right drug is given to each patient at the right time, at the right dose, and for the right duration.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing antibiotic therapy requires a holistic bench-to-bedside approach with interdisciplinary collaboration between pharmacologists, clinicians, microbiologists, and computational scientists. Novel experimental models provide insights into drug-pathogen interactions within complex host environments, while multiomics data provide details of the molecular mechanisms shaping bacterial responses. Pharmacometrics and machine learning can be used to integrate these insights into in silico models. This perspective highlights how these approaches-when used effectively and often together to build a systems-level view-can inform drug development and improve clinical decision-making, ensuring the right drug is given to each patient at the right time, at the right dose, and for the right duration.

从基于点的分析到基于系统的建模:解决抗菌素耐药性的知识整合。
优化抗生素治疗需要药理学家、临床医生、微生物学家和计算科学家之间的跨学科合作,从实验室到床边的整体方法。新的实验模型提供了复杂宿主环境中药物-病原体相互作用的见解,而多组学数据提供了形成细菌反应的分子机制的细节。药物计量学和机器学习可用于将这些见解整合到计算机模型中。这一观点强调了这些方法——当有效使用并经常一起构建系统级视图时——如何为药物开发提供信息并改善临床决策,确保在正确的时间、正确的剂量和正确的持续时间给每个患者正确的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信