Marianne Volkmar, Wolfgang Laudensack, Felix Bartzack, Niklas Erdmann, Sonja Schönrock, Emely Fuderer, Dirk Holtmann, Lars M. Blank, Roland Ulber
{"title":"Low Oxygen Availability Increases Itaconate Production by Ustilago maydis","authors":"Marianne Volkmar, Wolfgang Laudensack, Felix Bartzack, Niklas Erdmann, Sonja Schönrock, Emely Fuderer, Dirk Holtmann, Lars M. Blank, Roland Ulber","doi":"10.1002/bit.70035","DOIUrl":null,"url":null,"abstract":"<p>Itaconic acid is a monomer for high performance polymers. While produced in industry with the filamentous fungi <i>Aspergillus terreus</i>, the production with the smut fungus <i>Ustilago maydis</i> was proposed recently. The strict aerobic process suffers from high power input via gassing and stirring. Here, we investigated in detail possible scenarios for the reduction of energy use during cultivation. In contrast to fermentations with other organic acids, in which even small oxygen concentrations in the medium hinders production, low oxygen availability correlated with increased itaconic acid titer and yield. This is somewhat surprising, as not only the sensitivity of itaconic acid producing <i>U. maydis</i> to oxygen deprivation was previously reported, but also the lower degree of reduction compared to glucose is not directly arguing for improved yield. Scale ups from 0.4 to 30 L using different criteria confirmed the positive impact of low availability of oxygen on itaconic acid production, suggesting a shift in metabolic pathways under restricted oxygen conditions. Oxygen limitation, encountered more likely in industrial fermenters, can be effectively used as a process control strategy to enhance itaconic acid production in <i>U. maydis</i>, offering a new approach for improving the efficiency of industrial-scale biotechnological production.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 11","pages":"3007-3017"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/bit.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bit.70035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Itaconic acid is a monomer for high performance polymers. While produced in industry with the filamentous fungi Aspergillus terreus, the production with the smut fungus Ustilago maydis was proposed recently. The strict aerobic process suffers from high power input via gassing and stirring. Here, we investigated in detail possible scenarios for the reduction of energy use during cultivation. In contrast to fermentations with other organic acids, in which even small oxygen concentrations in the medium hinders production, low oxygen availability correlated with increased itaconic acid titer and yield. This is somewhat surprising, as not only the sensitivity of itaconic acid producing U. maydis to oxygen deprivation was previously reported, but also the lower degree of reduction compared to glucose is not directly arguing for improved yield. Scale ups from 0.4 to 30 L using different criteria confirmed the positive impact of low availability of oxygen on itaconic acid production, suggesting a shift in metabolic pathways under restricted oxygen conditions. Oxygen limitation, encountered more likely in industrial fermenters, can be effectively used as a process control strategy to enhance itaconic acid production in U. maydis, offering a new approach for improving the efficiency of industrial-scale biotechnological production.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.