Upper bounds of higher-order derivatives for Wachspress coordinates on polytopes

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Pengjie Tian, Yanqiu Wang
{"title":"Upper bounds of higher-order derivatives for Wachspress coordinates on polytopes","authors":"Pengjie Tian, Yanqiu Wang","doi":"10.1093/imanum/draf063","DOIUrl":null,"url":null,"abstract":"The gradient bounds of generalized barycentric coordinates (GBCs) play an essential role in the $H^{1}$ norm error estimate of generalized barycentric interpolations (Gillette, Rand & Bajaj (2012) Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417–439.). Similarly, an $H^{k}$ norm error estimate, $k>1$, requires upper bounds of higher-order derivatives. Due to the nonpolynomial nature of GBCs, existing techniques for proving the gradient bounds do not easily extend to higher-order cases. In this paper, we propose a new method for deriving upper bounds of higher-order derivatives for the Wachspress GBCs on simple convex $d$-dimensional polytopes, $d\\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of fourth- or higher-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"723 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The gradient bounds of generalized barycentric coordinates (GBCs) play an essential role in the $H^{1}$ norm error estimate of generalized barycentric interpolations (Gillette, Rand & Bajaj (2012) Error estimates for generalized barycentric interpolation. Adv. Comput. Math., 37, 417–439.). Similarly, an $H^{k}$ norm error estimate, $k>1$, requires upper bounds of higher-order derivatives. Due to the nonpolynomial nature of GBCs, existing techniques for proving the gradient bounds do not easily extend to higher-order cases. In this paper, we propose a new method for deriving upper bounds of higher-order derivatives for the Wachspress GBCs on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of fourth- or higher-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.
多面体上wachpress坐标的高阶导数的上界
广义重心坐标的梯度界在广义重心插值的H^{1}$范数误差估计中起着至关重要的作用。Bajaj(2012)广义重心插值的误差估计。放置第一版。数学。, 37, 417-439 .)。类似地,$H^{k}$范数误差估计$k>1$需要高阶导数的上界。由于gbc的非多项式性质,现有的证明梯度界的技术不容易推广到高阶情况。在本文中,我们提出了一种求简单凸$d$维多面体上wachpress gbc的高阶导数上界的新方法。该结果可用于证明基于wachpress的四阶或高阶椭圆方程的多边形有限元逼近的最优收敛性。本文的另一个贡献是比较了简单凸多面体的各种形状规则性条件,并利用凸几何知识澄清了它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信