Paul Meredith, Christina Saville, Chiara Dall'Ora, Tom Weeks, Sue Wierzbicki, Peter Griffiths
{"title":"Estimating Nurse Workload Using a Predictive Model From Routine Hospital Data: Algorithm Development and Validation.","authors":"Paul Meredith, Christina Saville, Chiara Dall'Ora, Tom Weeks, Sue Wierzbicki, Peter Griffiths","doi":"10.2196/71666","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Managing nurse staffing is complex due to fluctuating demand based on ward occupancy, patient acuity, and dependency. Monitoring staffing adequacy in real time has the potential to inform safe and efficient deployment of staff. Patient classification systems (PCSs) are being used for per shift workload measurement, but they add a frequent administrative task for ward nursing staff.</p><p><strong>Objective: </strong>The objective of this study is to explore whether an algorithm could estimate ward workload using existing routinely recorded data.</p><p><strong>Methods: </strong>Anonymized admission records and assessments from a PCS supporting the safer nursing care tool were used to determine nursing care demand in medical and surgical wards in a single UK hospital between February 2017 and February 2020. Records were linked by ward and time. The data were split into a training set (75%) and a test set (25%). We built a predictive model of ward workload (as measured by the PCS) using routinely recorded administrative data and admission National Early Warning Score. The outcome variable was ward workload derived from the patient classifications, measured as the number of whole-time equivalent (WTE) nursing staff per patient.</p><p><strong>Results: </strong>In a test set of 11,592 ward assessments from 42 wards with a mean WTE per patient of 1.64, the model's mean absolute error was 0.078, with a mean percentage error of 4.9%. A Bland-Altman plot of the differences between the predicted values and the assessment values showed 95% of them within 0.21 WTE per patient.</p><p><strong>Conclusions: </strong>Predictions of nursing workload from a relatively small number of routinely collected variables showed moderate accuracy for general wards in 1 English hospital. This demonstrates the potential for automating assessments of nurse staffing requirements from routine data, reducing time spent on this nonclinical overhead, and improving monitoring of real-time staffing pressures.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e71666"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/71666","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Managing nurse staffing is complex due to fluctuating demand based on ward occupancy, patient acuity, and dependency. Monitoring staffing adequacy in real time has the potential to inform safe and efficient deployment of staff. Patient classification systems (PCSs) are being used for per shift workload measurement, but they add a frequent administrative task for ward nursing staff.
Objective: The objective of this study is to explore whether an algorithm could estimate ward workload using existing routinely recorded data.
Methods: Anonymized admission records and assessments from a PCS supporting the safer nursing care tool were used to determine nursing care demand in medical and surgical wards in a single UK hospital between February 2017 and February 2020. Records were linked by ward and time. The data were split into a training set (75%) and a test set (25%). We built a predictive model of ward workload (as measured by the PCS) using routinely recorded administrative data and admission National Early Warning Score. The outcome variable was ward workload derived from the patient classifications, measured as the number of whole-time equivalent (WTE) nursing staff per patient.
Results: In a test set of 11,592 ward assessments from 42 wards with a mean WTE per patient of 1.64, the model's mean absolute error was 0.078, with a mean percentage error of 4.9%. A Bland-Altman plot of the differences between the predicted values and the assessment values showed 95% of them within 0.21 WTE per patient.
Conclusions: Predictions of nursing workload from a relatively small number of routinely collected variables showed moderate accuracy for general wards in 1 English hospital. This demonstrates the potential for automating assessments of nurse staffing requirements from routine data, reducing time spent on this nonclinical overhead, and improving monitoring of real-time staffing pressures.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.