Rationalizing Enhanced Affinity of Engineered T-Cell Receptors in Cancer Immunotherapy Through Interaction Energy Calculations and Residue Correlation Analysis.
{"title":"Rationalizing Enhanced Affinity of Engineered T-Cell Receptors in Cancer Immunotherapy Through Interaction Energy Calculations and Residue Correlation Analysis.","authors":"Mario Frezzini, Daniele Narzi","doi":"10.1002/prot.70028","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of T cell engineering has significantly transformed the field of cancer immunotherapy. In particular, T cells equipped with modified T cell receptors present a promising therapeutic strategy, especially for addressing solid tumors. Nonetheless, critical obstacles, including suboptimal clinical response rates, off-target toxicity, and the immunosuppressive nature of the tumor microenvironment, have impeded the full clinical implementation of this approach. Understanding the molecular determinants governing the interaction between T-cell receptors and major histocompatibility complex molecules is pivotal not only for designing TCRs capable of selectively and effectively recognizing MHC on cancer cells but also for minimizing off-target toxicity, thereby improving the safety profile of TCR-based therapies. In this study, we used a test case involving a natural TCR (c728) and its affinity-enhanced variant (c796), which differ by a single conservative mutation in the <math> <semantics><mrow><mi>β</mi> <mspace></mspace> <mtext>CDR1</mtext></mrow> <annotation>$$ \\beta\\ \\mathrm{CDR}1 $$</annotation></semantics> </math> region. Through molecular dynamics simulations, MM/PBSA binding energy and Free Energy Perturbation calculations, residue-specific energy decomposition, and correlation analyses, we dissected the molecular basis of the engineered TCR's six-fold increase in binding affinity for the peptide-MHC complex compared to its parental counterpart. Interestingly, our results indicate that this affinity enhancement is not directly attributable to the mutation itself but rather to the dynamic interplay of both proximal and distal residues that are either directly correlated with the mutation or connected via allosteric pathways. Our findings, which align with experimental data, highlight the nuanced role of structural flexibility and allosteric communication in shaping TCR-pMHC interactions. By demonstrating the utility of combining computational techniques to unravel these dynamics, this work emphasizes how similar approaches can guide the rational design of engineered TCRs with improved efficacy and specificity, advancing their application in cancer immunotherapy.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70028","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of T cell engineering has significantly transformed the field of cancer immunotherapy. In particular, T cells equipped with modified T cell receptors present a promising therapeutic strategy, especially for addressing solid tumors. Nonetheless, critical obstacles, including suboptimal clinical response rates, off-target toxicity, and the immunosuppressive nature of the tumor microenvironment, have impeded the full clinical implementation of this approach. Understanding the molecular determinants governing the interaction between T-cell receptors and major histocompatibility complex molecules is pivotal not only for designing TCRs capable of selectively and effectively recognizing MHC on cancer cells but also for minimizing off-target toxicity, thereby improving the safety profile of TCR-based therapies. In this study, we used a test case involving a natural TCR (c728) and its affinity-enhanced variant (c796), which differ by a single conservative mutation in the region. Through molecular dynamics simulations, MM/PBSA binding energy and Free Energy Perturbation calculations, residue-specific energy decomposition, and correlation analyses, we dissected the molecular basis of the engineered TCR's six-fold increase in binding affinity for the peptide-MHC complex compared to its parental counterpart. Interestingly, our results indicate that this affinity enhancement is not directly attributable to the mutation itself but rather to the dynamic interplay of both proximal and distal residues that are either directly correlated with the mutation or connected via allosteric pathways. Our findings, which align with experimental data, highlight the nuanced role of structural flexibility and allosteric communication in shaping TCR-pMHC interactions. By demonstrating the utility of combining computational techniques to unravel these dynamics, this work emphasizes how similar approaches can guide the rational design of engineered TCRs with improved efficacy and specificity, advancing their application in cancer immunotherapy.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.