{"title":"Weighted sum and order statistics methods for dynamic information borrowing in basket trials.","authors":"Cheng Huang, Chenghao Chu, Yimeng Lu, Bingming Yi, Ming-Hui Chen","doi":"10.1080/10543406.2025.2537088","DOIUrl":null,"url":null,"abstract":"<p><p>In basket trials, the same investigational therapy is studied on multiple sub-populations simultaneously under a single protocol. The goal of basket trials is to identify the sub-populations in which the therapy is effective. Basket trials have become a popular and generally accepted study design in disease areas including but not limited to oncology and rare diseases, for their advantages in operation and ethical considerations. Extensive research work on information borrowing has been conducted to explore the statistical efficiency in basket trials. In this paper, two novel frequentist methods for basket trials are proposed. The first method borrows information to minimize the mean squared errors in the treatment effect estimation. The second method uses information across all baskets to optimize the multiple testing task in detecting the treatment effects in each basket. Extensive simulation studies show that the proposed methods substantially improved statistical efficiency in basket trials while limiting family-wise error rate inflation. Both methods can be implemented with common statistical models with or without adjustment for covariates.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-20"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2537088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In basket trials, the same investigational therapy is studied on multiple sub-populations simultaneously under a single protocol. The goal of basket trials is to identify the sub-populations in which the therapy is effective. Basket trials have become a popular and generally accepted study design in disease areas including but not limited to oncology and rare diseases, for their advantages in operation and ethical considerations. Extensive research work on information borrowing has been conducted to explore the statistical efficiency in basket trials. In this paper, two novel frequentist methods for basket trials are proposed. The first method borrows information to minimize the mean squared errors in the treatment effect estimation. The second method uses information across all baskets to optimize the multiple testing task in detecting the treatment effects in each basket. Extensive simulation studies show that the proposed methods substantially improved statistical efficiency in basket trials while limiting family-wise error rate inflation. Both methods can be implemented with common statistical models with or without adjustment for covariates.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.