Graph cut-based segmentation for intervertebral disc in human MRI.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Leena Silvoster, R Mathusoothan S Kumar
{"title":"Graph cut-based segmentation for intervertebral disc in human MRI.","authors":"Leena Silvoster, R Mathusoothan S Kumar","doi":"10.1080/21681163.2025.2475992","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an automated algorithm for the 2D segmentation of both healthy and degenerated lumbar intervertebral discs (IVD) from T2-weighted Turbo Spin Echo(TSE) sagittal spine Magnetic Resonance Images (MRIs). Our approach employs a fast algorithm addressing the s-t max-flow/min-cut problem, incorporating anatomical knowledge of soft tissues in the human body. In the initial phase, preprocessing is applied to the input image to eliminate intensity inhomogeneity and noise. A graph is then constructed from the image pixels, and seed points are automatically initialised using a growing bounding box. In the second phase, the method applies the s-t max-flow/min-cut algorithm to separate an IVD from the background. This method effectively detects degenerated and healthy IVDs by applying the s-t max-flow/min-cut algorithm within a directed graph. The polynomial time complexity of this approach enables the exploration of a globally optimal solution, eliminating the need for user interaction in seed point selection. Validation of the algorithm on a dataset of 15 patients demonstrates its efficient segmentation performance, achieving a Dice Similarity Coefficient (DSC) of 89%.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":"13 1","pages":"2475992"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2025.2475992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an automated algorithm for the 2D segmentation of both healthy and degenerated lumbar intervertebral discs (IVD) from T2-weighted Turbo Spin Echo(TSE) sagittal spine Magnetic Resonance Images (MRIs). Our approach employs a fast algorithm addressing the s-t max-flow/min-cut problem, incorporating anatomical knowledge of soft tissues in the human body. In the initial phase, preprocessing is applied to the input image to eliminate intensity inhomogeneity and noise. A graph is then constructed from the image pixels, and seed points are automatically initialised using a growing bounding box. In the second phase, the method applies the s-t max-flow/min-cut algorithm to separate an IVD from the background. This method effectively detects degenerated and healthy IVDs by applying the s-t max-flow/min-cut algorithm within a directed graph. The polynomial time complexity of this approach enables the exploration of a globally optimal solution, eliminating the need for user interaction in seed point selection. Validation of the algorithm on a dataset of 15 patients demonstrates its efficient segmentation performance, achieving a Dice Similarity Coefficient (DSC) of 89%.

Abstract Image

Abstract Image

Abstract Image

基于图切割的人体MRI椎间盘分割。
我们介绍了一种自动算法,用于从t2加权涡轮自旋回波(TSE)矢状脊柱磁共振图像(mri)中对健康和退变的腰椎间盘(IVD)进行二维分割。我们的方法采用了一种快速算法来解决s-t最大流量/最小切割问题,结合了人体软组织的解剖学知识。在初始阶段,对输入图像进行预处理,消除强度不均匀性和噪声。然后从图像像素构建一个图形,并使用不断增长的边界框自动初始化种子点。在第二阶段,该方法采用s-t最大流量/最小切割算法从背景中分离IVD。该方法在有向图中应用s-t最大流量/最小切割算法,有效地检测出退化和健康的ivd。该方法的多项式时间复杂度使其能够探索全局最优解,从而消除了在种子点选择中对用户交互的需要。在15例患者的数据集上验证了该算法的高效分割性能,实现了89%的Dice Similarity Coefficient (DSC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.20%
发文量
102
期刊介绍: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信