Predicting intracranial pressure monitor placement in children with traumatic brain injury: a prospective cohort study to develop a clinical decision support tool.

IF 4.6 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Seth Russell, Peter E DeWitt, Laura Helmkamp, Kathryn Colborn, Charlotte Gray, Margaret Rebull, Yamila L Sierra, Rachel Greer, Lexi Petruccelli, Sara Shankman, Todd C Hankinson, Fuyong Xing, David J Albers, Tellen D Bennett
{"title":"Predicting intracranial pressure monitor placement in children with traumatic brain injury: a prospective cohort study to develop a clinical decision support tool.","authors":"Seth Russell, Peter E DeWitt, Laura Helmkamp, Kathryn Colborn, Charlotte Gray, Margaret Rebull, Yamila L Sierra, Rachel Greer, Lexi Petruccelli, Sara Shankman, Todd C Hankinson, Fuyong Xing, David J Albers, Tellen D Bennett","doi":"10.1093/jamia/ocaf120","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Clinicians currently make decisions about placing an intracranial pressure (ICP) monitor in children with traumatic brain injury (TBI) without the benefit of an accurate clinical decision support tool. The goal of this study was to develop and validate a model that predicts placement of an ICP monitor and updates as new information becomes available.</p><p><strong>Materials and methods: </strong>A prospective observational cohort study was conducted from September 2014 to January 2024. The setting included one US hospital designated as an American College of Surgeons Level 1 Pediatric Trauma Center. Participants were 389 children with acute TBI admitted to the ICU who had at least one Glasgow Coma Scale (GCS) score ≤ 8 or intubation with at least one GCS-Motor ≤ 5. We excluded children who received ICP monitors prior to arrival, those with GCS = 3 and bilateral fixed, dilated pupils, and those with a do not resuscitate order.</p><p><strong>Results: </strong>Of the 389 participants, 138 received ICP monitoring. Several machine learning models, including a recurrent neural network (RNN), were developed and validated using 4 combinations of input data. The best performing model, an RNN, achieved an F1 of 0.71 within 720 minutes of hospital arrival. The cumulative F1 of the RNN from minute 0 to 720 was 0.61. The best performing non-neural network model, standard logistic regression, achieved an F1 of 0.36 within 720 minutes of hospital arrival.</p><p><strong>Conclusions: </strong>These findings will contribute to design and implementation of a multidisciplinary clinical decision support tool for ICP monitor placement in children with TBI.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Clinicians currently make decisions about placing an intracranial pressure (ICP) monitor in children with traumatic brain injury (TBI) without the benefit of an accurate clinical decision support tool. The goal of this study was to develop and validate a model that predicts placement of an ICP monitor and updates as new information becomes available.

Materials and methods: A prospective observational cohort study was conducted from September 2014 to January 2024. The setting included one US hospital designated as an American College of Surgeons Level 1 Pediatric Trauma Center. Participants were 389 children with acute TBI admitted to the ICU who had at least one Glasgow Coma Scale (GCS) score ≤ 8 or intubation with at least one GCS-Motor ≤ 5. We excluded children who received ICP monitors prior to arrival, those with GCS = 3 and bilateral fixed, dilated pupils, and those with a do not resuscitate order.

Results: Of the 389 participants, 138 received ICP monitoring. Several machine learning models, including a recurrent neural network (RNN), were developed and validated using 4 combinations of input data. The best performing model, an RNN, achieved an F1 of 0.71 within 720 minutes of hospital arrival. The cumulative F1 of the RNN from minute 0 to 720 was 0.61. The best performing non-neural network model, standard logistic regression, achieved an F1 of 0.36 within 720 minutes of hospital arrival.

Conclusions: These findings will contribute to design and implementation of a multidisciplinary clinical decision support tool for ICP monitor placement in children with TBI.

预测外伤性脑损伤儿童颅内压监测仪的放置:一项开发临床决策支持工具的前瞻性队列研究。
目的:临床医生目前在没有准确的临床决策支持工具的情况下决定在创伤性脑损伤(TBI)儿童中放置颅内压(ICP)监测仪。本研究的目的是开发和验证一个模型,该模型可以预测ICP监测仪的放置位置,并在获得新信息时进行更新。材料与方法:2014年9月至2024年1月进行前瞻性观察队列研究。其中包括一家被指定为美国外科医师学会一级儿科创伤中心的美国医院。参与者是389名入院ICU的急性TBI患儿,至少有一项格拉斯哥昏迷评分(GCS)评分≤8或至少有一项GCS- motor插管评分≤5。我们排除了入院前接受过颅内压监护的儿童、GCS = 3、双侧固定、瞳孔扩大的儿童以及有不复苏命令的儿童。结果:在389名参与者中,138人接受了ICP监测。使用4种输入数据组合开发并验证了几种机器学习模型,包括循环神经网络(RNN)。表现最好的模型是RNN,在到达医院的720分钟内达到了0.71的F1。从0分钟到720分钟,RNN的累积F1为0.61。表现最好的非神经网络模型,标准逻辑回归,在到达医院720分钟内达到了0.36的F1。结论:这些发现将有助于设计和实施一种多学科的临床决策支持工具,用于颅脑损伤儿童ICP监护仪的放置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信