Advancing therapeutic vaccines for chronic hepatitis B: Integrating reverse vaccinology and immunoinformatics.

IF 2.5 Q2 GASTROENTEROLOGY & HEPATOLOGY
Patricia Gita Naully, Marselina Irasonia Tan, Korri Elvanita El Khobar, Caecilia H C Sukowati, Ernawati Arifin Giri-Rachman
{"title":"Advancing therapeutic vaccines for chronic hepatitis B: Integrating reverse vaccinology and immunoinformatics.","authors":"Patricia Gita Naully, Marselina Irasonia Tan, Korri Elvanita El Khobar, Caecilia H C Sukowati, Ernawati Arifin Giri-Rachman","doi":"10.4254/wjh.v17.i7.107620","DOIUrl":null,"url":null,"abstract":"<p><p>Current treatments for chronic hepatitis B (CHB) are lifelong, often accompanied by side effects and the risk of drug resistance, highlighting the urgent need for alternative therapies such as therapeutic vaccines. However, challenges such as selecting appropriate antigens and addressing multiple hepatitis B virus (HBV) genotypes hinder the development of these vaccines. One approach to overcoming these challenges is reverse vaccinology (RV) combined with immunoinformatics. RV uses computational methods to identify antigens from pathogen genetic information, including genomic and proteomic data. These methods have helped researchers identify conserved epitopes across bacterial strains or viral species, including multiple HBV genotypes. Computational tools, such as epitope mapping algorithms, molecular docking analysis, molecular dynamics simulations, and immune response simulations, enable key epitope identification, predict vaccine candidates' binding potential to immune cell receptors, and forecast the immune response. Together, these approaches streamline therapeutic vaccine design for CHB, making it faster, more cost-effective, and accurate. This review aims to explore the potential role of RV and immunoinformatics in advancing therapeutic vaccine design for CHB.</p>","PeriodicalId":23687,"journal":{"name":"World Journal of Hepatology","volume":"17 7","pages":"107620"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Hepatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4254/wjh.v17.i7.107620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current treatments for chronic hepatitis B (CHB) are lifelong, often accompanied by side effects and the risk of drug resistance, highlighting the urgent need for alternative therapies such as therapeutic vaccines. However, challenges such as selecting appropriate antigens and addressing multiple hepatitis B virus (HBV) genotypes hinder the development of these vaccines. One approach to overcoming these challenges is reverse vaccinology (RV) combined with immunoinformatics. RV uses computational methods to identify antigens from pathogen genetic information, including genomic and proteomic data. These methods have helped researchers identify conserved epitopes across bacterial strains or viral species, including multiple HBV genotypes. Computational tools, such as epitope mapping algorithms, molecular docking analysis, molecular dynamics simulations, and immune response simulations, enable key epitope identification, predict vaccine candidates' binding potential to immune cell receptors, and forecast the immune response. Together, these approaches streamline therapeutic vaccine design for CHB, making it faster, more cost-effective, and accurate. This review aims to explore the potential role of RV and immunoinformatics in advancing therapeutic vaccine design for CHB.

Abstract Image

推进慢性乙型肝炎治疗性疫苗:整合反向疫苗学和免疫信息学。
目前慢性乙型肝炎(CHB)的治疗是终身的,往往伴有副作用和耐药风险,这突出表明迫切需要治疗性疫苗等替代疗法。然而,诸如选择合适的抗原和处理多种乙型肝炎病毒(HBV)基因型等挑战阻碍了这些疫苗的开发。克服这些挑战的一种方法是反向疫苗学(RV)与免疫信息学相结合。RV使用计算方法从病原体遗传信息中识别抗原,包括基因组和蛋白质组学数据。这些方法已经帮助研究人员确定了跨细菌菌株或病毒物种(包括多种HBV基因型)的保守表位。计算工具,如表位定位算法、分子对接分析、分子动力学模拟和免疫反应模拟,能够识别关键表位,预测候选疫苗与免疫细胞受体的结合潜力,并预测免疫反应。总之,这些方法简化了慢性乙型肝炎治疗性疫苗的设计,使其更快、更具成本效益和更准确。本文旨在探讨RV和免疫信息学在推进慢性乙型肝炎治疗性疫苗设计中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Hepatology
World Journal of Hepatology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.10
自引率
4.20%
发文量
172
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信