A sensitivity study of urbanization impacts on regional meteorology using a Bayesian functional analysis of variance.

IF 3.6 3区 环境科学与生态学 Q1 ENGINEERING, CIVIL
Giacomo Moraglia, Matthew Bonas, Paola Crippa
{"title":"A sensitivity study of urbanization impacts on regional meteorology using a Bayesian functional analysis of variance.","authors":"Giacomo Moraglia, Matthew Bonas, Paola Crippa","doi":"10.1007/s00477-025-03032-x","DOIUrl":null,"url":null,"abstract":"<p><p>Urbanization affects atmospheric boundary layer dynamics by altering cloud formation and precipitation patterns through the urban heat island (UHI) effect, perturbed wind flows, and urban aerosols, that overall contribute to the urban rainfall effect (URE). This study analyzes an ensemble of numerical simulations with the Weather Research and Forecasting (WRF) model and its version with coupled chemistry and aerosols (WRF-Chem) through a Functional ANalysis Of VAriance (FANOVA) approach to isolate the urban signature from the regional climatology and to investigate the relative contributions of various mechanisms and drivers to the URE. Different metropolitan areas across the United States are analyzed and their urban land cover and anthropogenic emissions are replaced with dominant land-use categories such as grasslands or croplands and biogenic only emissions, as in neighboring regions. Our findings indicate a significant role of the urban land cover in impacting surface temperature and turbulent kinetic energy over the city, and precipitation patterns, both within and downwind of the urban environment. Moreover, simulations of a deep convection event suggest that the aerosols impact dominates the sign and spatial extent of the changes in the simulated precipitation compared to the UHI effect, leading to a significant precipitation enhancement within the urban borders and suppression in downwind regions.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"39 8","pages":"3605-3617"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-025-03032-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Urbanization affects atmospheric boundary layer dynamics by altering cloud formation and precipitation patterns through the urban heat island (UHI) effect, perturbed wind flows, and urban aerosols, that overall contribute to the urban rainfall effect (URE). This study analyzes an ensemble of numerical simulations with the Weather Research and Forecasting (WRF) model and its version with coupled chemistry and aerosols (WRF-Chem) through a Functional ANalysis Of VAriance (FANOVA) approach to isolate the urban signature from the regional climatology and to investigate the relative contributions of various mechanisms and drivers to the URE. Different metropolitan areas across the United States are analyzed and their urban land cover and anthropogenic emissions are replaced with dominant land-use categories such as grasslands or croplands and biogenic only emissions, as in neighboring regions. Our findings indicate a significant role of the urban land cover in impacting surface temperature and turbulent kinetic energy over the city, and precipitation patterns, both within and downwind of the urban environment. Moreover, simulations of a deep convection event suggest that the aerosols impact dominates the sign and spatial extent of the changes in the simulated precipitation compared to the UHI effect, leading to a significant precipitation enhancement within the urban borders and suppression in downwind regions.

Abstract Image

Abstract Image

Abstract Image

城市化对区域气象影响的敏感性研究——基于方差的贝叶斯函数分析。
城市化通过城市热岛效应、受扰动的风流和城市气溶胶改变云的形成和降水模式,从而影响大气边界层动力学,而城市热岛效应、受扰动的风流和城市气溶胶总体上有助于城市降雨效应(URE)。本文通过方差函数分析(FANOVA)方法分析了天气研究与预报(WRF)模式及其化学和气溶胶耦合模式(WRF- chem)的综合数值模拟,将城市特征与区域气气学分离出来,并探讨了各种机制和驱动因素对URE的相对贡献。分析了美国不同的大都市地区,并将其城市土地覆盖和人为排放替换为主要的土地利用类别,如草地或农田以及仅生物源排放,与邻近地区一样。研究结果表明,城市土地覆盖对城市地表温度、湍流动能和降水模式都有重要影响。此外,对深对流事件的模拟表明,与热岛效应相比,气溶胶影响在模拟降水变化的标志和空间范围上占主导地位,导致城市边界内降水显著增强,下风区域降水受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.50%
发文量
189
审稿时长
3.8 months
期刊介绍: Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas: - Spatiotemporal analysis and mapping of natural processes. - Enviroinformatics. - Environmental risk assessment, reliability analysis and decision making. - Surface and subsurface hydrology and hydraulics. - Multiphase porous media domains and contaminant transport modelling. - Hazardous waste site characterization. - Stochastic turbulence and random hydrodynamic fields. - Chaotic and fractal systems. - Random waves and seafloor morphology. - Stochastic atmospheric and climate processes. - Air pollution and quality assessment research. - Modern geostatistics. - Mechanisms of pollutant formation, emission, exposure and absorption. - Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection. - Bioinformatics. - Probabilistic methods in ecology and population biology. - Epidemiological investigations. - Models using stochastic differential equations stochastic or partial differential equations. - Hazardous waste site characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信