{"title":"Tumor suppressor OSR1 is modified by SUMO1 and regulates the Wnt/β-catenin signaling pathway in HCC.","authors":"Xinju Lin, Yuming Liu, Zisen Lai, Xiaopei Wang, Yongliang Cui, Shangeng Weng","doi":"10.1016/j.yexcr.2025.114693","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world. Exploring the underlying molecular mechanisms of HCC, such as those involving small ubiquitin-related modifier (SUMO) and its targets, is worthwhile. A total of 12 HCC tissue samples were collected for immunohistochemistry. The interaction between SUMO1 and OSR1 was confirmed by co-IP and immunofluorescence (IF). The expression (qPCR and Western blot), cytological function (CCK-8, clone formation and transwell assays) of OSR1 was further investigated in HepG2 cells. The anti-tumor function of OSR1 was also verified in the nude mouse xenograft model. Western blot analysis revealed the underlying downstream signaling pathway of SUMO1-modified OSR1 in HCC. Up-regulated co-expression of SUMO1-OSR1 was observed in the HepG2 cells. Through the cytological experiments and a nude mouse xenograft model, we found that OSR1 is a tumor suppressor gene that inhibits the proliferation and invasion of the HepG2 cells in vitro. Intriguingly, SUMO1-OE antagonized OSR1-mediated β-catenin regulation: in nuclei, SUMO1-OE enhanced β-catenin expression, counteracting OSR1-OE-induced suppression, whereas in the cytoplasm, SUMO1-OE inhibited β-catenin accumulation and attenuated OSR1-OE-driven promotion. Hypoxia reversed these effects, suggesting an oxygen-sensitive interplay between SUMO1 and OSR1. In conclusion, OSR1 is a tumor suppressor in HCC via attenuation of the Wnt/β-catenin pathway. SUMO1 modifies OSR1, suppressing the Wnt/β-catenin signaling pathway and promoting the occurrence and development of HCC; this effect of which could be enhanced by hypoxia.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114693"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2025.114693","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world. Exploring the underlying molecular mechanisms of HCC, such as those involving small ubiquitin-related modifier (SUMO) and its targets, is worthwhile. A total of 12 HCC tissue samples were collected for immunohistochemistry. The interaction between SUMO1 and OSR1 was confirmed by co-IP and immunofluorescence (IF). The expression (qPCR and Western blot), cytological function (CCK-8, clone formation and transwell assays) of OSR1 was further investigated in HepG2 cells. The anti-tumor function of OSR1 was also verified in the nude mouse xenograft model. Western blot analysis revealed the underlying downstream signaling pathway of SUMO1-modified OSR1 in HCC. Up-regulated co-expression of SUMO1-OSR1 was observed in the HepG2 cells. Through the cytological experiments and a nude mouse xenograft model, we found that OSR1 is a tumor suppressor gene that inhibits the proliferation and invasion of the HepG2 cells in vitro. Intriguingly, SUMO1-OE antagonized OSR1-mediated β-catenin regulation: in nuclei, SUMO1-OE enhanced β-catenin expression, counteracting OSR1-OE-induced suppression, whereas in the cytoplasm, SUMO1-OE inhibited β-catenin accumulation and attenuated OSR1-OE-driven promotion. Hypoxia reversed these effects, suggesting an oxygen-sensitive interplay between SUMO1 and OSR1. In conclusion, OSR1 is a tumor suppressor in HCC via attenuation of the Wnt/β-catenin pathway. SUMO1 modifies OSR1, suppressing the Wnt/β-catenin signaling pathway and promoting the occurrence and development of HCC; this effect of which could be enhanced by hypoxia.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.