A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ana R Baião, Zhaoxiang Cai, Rebecca C Poulos, Phillip J Robinson, Roger R Reddel, Qing Zhong, Susana Vinga, Emanuel Gonçalves
{"title":"A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.","authors":"Ana R Baião, Zhaoxiang Cai, Rebecca C Poulos, Phillip J Robinson, Roger R Reddel, Qing Zhong, Susana Vinga, Emanuel Gonçalves","doi":"10.1093/bib/bbaf355","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of high-throughput sequencing and other assay technologies has resulted in the generation of large and complex multi-omics datasets, offering unprecedented opportunities for advancing precision medicine. However, multi-omics data integration remains challenging due to the high-dimensionality, heterogeneity, and frequency of missing values across data types. Computational methods leveraging statistical and machine learning approaches have been developed to address these issues and uncover complex biological patterns, improving our understanding of disease mechanisms. Here, we comprehensively review state-of-the-art multi-omics integration methods with a focus on deep generative models, particularly variational autoencoders (VAEs) that have been widely used for data imputation, augmentation, and batch effect correction. We explore the technical aspects of VAE loss functions and regularisation techniques, including adversarial training, disentanglement, and contrastive learning. Moreover, we highlight recent advancements in foundation models and multimodal data integration, outlining future directions in precision medicine research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of high-throughput sequencing and other assay technologies has resulted in the generation of large and complex multi-omics datasets, offering unprecedented opportunities for advancing precision medicine. However, multi-omics data integration remains challenging due to the high-dimensionality, heterogeneity, and frequency of missing values across data types. Computational methods leveraging statistical and machine learning approaches have been developed to address these issues and uncover complex biological patterns, improving our understanding of disease mechanisms. Here, we comprehensively review state-of-the-art multi-omics integration methods with a focus on deep generative models, particularly variational autoencoders (VAEs) that have been widely used for data imputation, augmentation, and batch effect correction. We explore the technical aspects of VAE loss functions and regularisation techniques, including adversarial training, disentanglement, and contrastive learning. Moreover, we highlight recent advancements in foundation models and multimodal data integration, outlining future directions in precision medicine research.

Abstract Image

Abstract Image

Abstract Image

多组学数据集成方法的技术回顾:从经典统计到深度生成方法。
高通量测序和其他分析技术的快速发展导致了大型和复杂的多组学数据集的产生,为推进精准医学提供了前所未有的机会。然而,由于数据类型的高维性、异质性和缺失值的频率,多组学数据集成仍然具有挑战性。利用统计和机器学习方法的计算方法已经开发出来,以解决这些问题并揭示复杂的生物模式,提高我们对疾病机制的理解。在这里,我们全面回顾了最先进的多组学集成方法,重点是深度生成模型,特别是广泛用于数据输入、增强和批量效果校正的变分自编码器(VAEs)。我们探讨了VAE损失函数和正则化技术的技术方面,包括对抗性训练、解纠缠和对比学习。此外,我们强调了基础模型和多模态数据集成的最新进展,概述了精准医学研究的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信