{"title":"Prediction of Volatility Using Monetary Rate and GARCH-LSTM Hybrid Model","authors":"Jyoti Ranjan, C. Anirvinna","doi":"10.1002/isaf.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Predicting volatility is very important for the financial markets as it helps to determine risk and decision-making. Predicting volatilities for such stock indices, which include the Nifty 50, is important for traders, investors, and policymakers. In this study, advanced hybrid models are used to predict the volatility of the Nifty 50 index over intervals of 1, 7, 14, and 21 days. The GJR-GARCH-LSTM and the GARCH-LSTM are two hybrid models that forecast the volatility of the Nifty 50. The effect of including the cash reserve ratio (CRR) in the analysis is also looked at. As the forecast horizon grows, the results show decreased prediction accuracy. The mean squared error (MSE) increased by 0.78% from the 1-day to the 7-day forecast, decreased by 2.63% between the 1-day and 7-day projections, rose by about 55% from the 7-day to the 14-day forecast, and grew by 56% between the 14-day and 21-day projections. The GJR-GARCH-LSTM model had better results compared to the simple GARCH-LSTM hybrid model. The novelty of this study is in building and validating hybrid models, specifically the GJR-GARCH-LSTM, to predict Nifty 50 index volatility and using the CRR as a macroeconomic explanatory variable. Different from current literature, which tends to use hybrid models in a generic sense, this paper adapts the model to the Indian financial environment and shows the additional predictive power of monetary policy determinants such as CRR.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"32 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting volatility is very important for the financial markets as it helps to determine risk and decision-making. Predicting volatilities for such stock indices, which include the Nifty 50, is important for traders, investors, and policymakers. In this study, advanced hybrid models are used to predict the volatility of the Nifty 50 index over intervals of 1, 7, 14, and 21 days. The GJR-GARCH-LSTM and the GARCH-LSTM are two hybrid models that forecast the volatility of the Nifty 50. The effect of including the cash reserve ratio (CRR) in the analysis is also looked at. As the forecast horizon grows, the results show decreased prediction accuracy. The mean squared error (MSE) increased by 0.78% from the 1-day to the 7-day forecast, decreased by 2.63% between the 1-day and 7-day projections, rose by about 55% from the 7-day to the 14-day forecast, and grew by 56% between the 14-day and 21-day projections. The GJR-GARCH-LSTM model had better results compared to the simple GARCH-LSTM hybrid model. The novelty of this study is in building and validating hybrid models, specifically the GJR-GARCH-LSTM, to predict Nifty 50 index volatility and using the CRR as a macroeconomic explanatory variable. Different from current literature, which tends to use hybrid models in a generic sense, this paper adapts the model to the Indian financial environment and shows the additional predictive power of monetary policy determinants such as CRR.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.