WD-PSTALSTM: a data-driven hybrid model for prediction of diesel vehicle NOx emissions

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ling Liu , Jihui Zhuang , Yuelei Wang , Pei Li , Dongping Guo , Xiaoming Cheng
{"title":"WD-PSTALSTM: a data-driven hybrid model for prediction of diesel vehicle NOx emissions","authors":"Ling Liu ,&nbsp;Jihui Zhuang ,&nbsp;Yuelei Wang ,&nbsp;Pei Li ,&nbsp;Dongping Guo ,&nbsp;Xiaoming Cheng","doi":"10.1016/j.egyai.2025.100578","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of transient nitrogen oxides (NOx) emissions from diesel vehicles is essential for precise emission inventories and effective pollution control but challenged by data nonlinearity and dynamic operating conditions. This study develops the Wavelet Decomposition (WD)-Parallel Spatiotemporal Attention-based Long Short-Term Memory (PSTALSTM) model, using real-world Portable Emission Measurement System (PEMS) and On-Board Diagnostics (OBD) data. WD preprocessing reduces emission data non-stationarity, generating more stable inputs. The PSTALSTM architecture, built upon Bidirectional Long Short-Term Memory (Bi-LSTM), incorporates a parallel attention mechanism to adaptively weight features and temporal segments, effectively capturing spatiotemporal correlations within the emission data. Validation with on-road test data demonstrates WD-PSTALSTM's superior performance over existing models. It achieves reductions exceeding 20 % in mean absolute error (MAE) and 15 % in root mean square error (RMSE), significantly enhancing prediction accuracy. These results establish WD-PSTALSTM as an effective approach for forecasting transient diesel engine NOx emissions. The research provides valuable methodologies for emission prediction based on vehicle operational data, contributing to environmental pollution mitigation efforts.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100578"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of transient nitrogen oxides (NOx) emissions from diesel vehicles is essential for precise emission inventories and effective pollution control but challenged by data nonlinearity and dynamic operating conditions. This study develops the Wavelet Decomposition (WD)-Parallel Spatiotemporal Attention-based Long Short-Term Memory (PSTALSTM) model, using real-world Portable Emission Measurement System (PEMS) and On-Board Diagnostics (OBD) data. WD preprocessing reduces emission data non-stationarity, generating more stable inputs. The PSTALSTM architecture, built upon Bidirectional Long Short-Term Memory (Bi-LSTM), incorporates a parallel attention mechanism to adaptively weight features and temporal segments, effectively capturing spatiotemporal correlations within the emission data. Validation with on-road test data demonstrates WD-PSTALSTM's superior performance over existing models. It achieves reductions exceeding 20 % in mean absolute error (MAE) and 15 % in root mean square error (RMSE), significantly enhancing prediction accuracy. These results establish WD-PSTALSTM as an effective approach for forecasting transient diesel engine NOx emissions. The research provides valuable methodologies for emission prediction based on vehicle operational data, contributing to environmental pollution mitigation efforts.

Abstract Image

WD-PSTALSTM:用于预测柴油车氮氧化物排放的数据驱动混合模型
柴油车辆瞬态氮氧化物(NOx)排放的准确预测对于精确的排放清单和有效的污染控制至关重要,但数据非线性和动态运行条件对其提出了挑战。本研究利用真实世界的便携式发射测量系统(PEMS)和车载诊断(OBD)数据,开发了小波分解(WD)-基于并行时空注意力的长短期记忆(PSTALSTM)模型。WD预处理减少了排放数据的非平稳性,产生了更稳定的输入。PSTALSTM架构建立在双向长短期记忆(Bi-LSTM)的基础上,采用并行注意机制自适应加权特征和时间片段,有效捕获发射数据中的时空相关性。道路测试数据验证表明,WD-PSTALSTM的性能优于现有车型。平均绝对误差(MAE)降低20%以上,均方根误差(RMSE)降低15%以上,显著提高了预测精度。这些结果表明,WD-PSTALSTM是预测柴油机瞬态NOx排放的有效方法。该研究为基于车辆运行数据的排放预测提供了有价值的方法,有助于减轻环境污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信