Optimizing lossy state preparation for quantum sensing using Hamiltonian engineering

Bharath Hebbe Madhusudhana
{"title":"Optimizing lossy state preparation for quantum sensing using Hamiltonian engineering","authors":"Bharath Hebbe Madhusudhana","doi":"10.1016/j.mtquan.2025.100046","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most prominent platforms for demonstrating quantum sensing below the standard quantum limit is the spinor Bose–Einstein condensate. While a quantum advantage using several tens of thousands of atoms has been demonstrated in this platform, it faces an important challenge: atom loss. Atom loss is a Markovian error process modeled by Lindblad jump operators, and a no-go theorem, which we also show here, states that the loss of atoms in all spin components reduces the quantum advantage to a constant factor. Here, we show that this no-go theorem can be circumvented if we constrain atom losses to a <em>single</em> spin component. Moreover, we show that in this case, the maximum quantum Fisher information with <span><math><mi>N</mi></math></span> atoms scales as <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, establishing that a <em>scalable</em> quantum advantage can be achieved <em>despite</em> atom loss. Although Lindblad jump operators are generally non-Hermitian and non-invertible, we use their <em>Moore–Penrose inverse</em> to develop a framework for constructing several states with this scaling of Fisher information in the presence of losses. We use Hamiltonian engineering with realistic Hamiltonians to develop experimental protocols for preparing these states. Finally, we discuss possible experimental techniques to constrain the losses to a single spin mode.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"7 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most prominent platforms for demonstrating quantum sensing below the standard quantum limit is the spinor Bose–Einstein condensate. While a quantum advantage using several tens of thousands of atoms has been demonstrated in this platform, it faces an important challenge: atom loss. Atom loss is a Markovian error process modeled by Lindblad jump operators, and a no-go theorem, which we also show here, states that the loss of atoms in all spin components reduces the quantum advantage to a constant factor. Here, we show that this no-go theorem can be circumvented if we constrain atom losses to a single spin component. Moreover, we show that in this case, the maximum quantum Fisher information with N atoms scales as N3/2, establishing that a scalable quantum advantage can be achieved despite atom loss. Although Lindblad jump operators are generally non-Hermitian and non-invertible, we use their Moore–Penrose inverse to develop a framework for constructing several states with this scaling of Fisher information in the presence of losses. We use Hamiltonian engineering with realistic Hamiltonians to develop experimental protocols for preparing these states. Finally, we discuss possible experimental techniques to constrain the losses to a single spin mode.
利用哈密顿工程优化量子传感的有损态制备
在标准量子极限下演示量子传感的最突出的平台之一是自旋子玻色-爱因斯坦凝聚。虽然在这个平台上已经证明了使用数万个原子的量子优势,但它面临着一个重要的挑战:原子损失。原子损失是一个由Lindblad跳跃算子模拟的马尔可夫误差过程,我们在这里也展示了一个不去定理,它表明所有自旋组分中的原子损失将量子优势降低到一个常数因子。在这里,我们证明,如果我们将原子损失限制为单个自旋分量,则可以绕过这个不去定理。此外,我们表明,在这种情况下,具有N个原子的最大量子Fisher信息的尺度为N3/2,这表明尽管原子损失,也可以实现可扩展的量子优势。尽管Lindblad跳跃算子通常是非厄米的和不可逆转的,但我们使用它们的Moore-Penrose逆来开发一个框架,用于在存在损失的情况下使用这种Fisher信息的缩放来构建几个状态。我们使用哈密顿工程和现实的哈密顿量来开发准备这些状态的实验协议。最后,我们讨论了将损耗限制在单一自旋模式的可能实验技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信