Harshita Kaul, Lea Isermann, Katharina Senft, Milica Popovic, Theodoros Georgomanolis, Linda Baumann, Pujyanathan Sivanesan, Andromachi Pouikli, Hendrik Nolte, Bojana Lucic, Ximena Hildebrandt, Katrin Seidel, Thorsten Gnad, Felix Gaedke, Ulrike Göbel, Franziska Peters, Maksym Cherevatenko, Joo Hyun Park, Astrid Schauss, Nieves Peltzer, Jens Claus Brüning, Jan-Wilhelm Kornfeld, Alexander Pfeifer, Thomas Langer, Marina Lusic, Sara A. Wickström, Christian Frezza, Aleksandra Trifunovic
{"title":"2-hydroxyglutarate mediates whitening of brown adipocytes coupled to nuclear softening upon mitochondrial dysfunction","authors":"Harshita Kaul, Lea Isermann, Katharina Senft, Milica Popovic, Theodoros Georgomanolis, Linda Baumann, Pujyanathan Sivanesan, Andromachi Pouikli, Hendrik Nolte, Bojana Lucic, Ximena Hildebrandt, Katrin Seidel, Thorsten Gnad, Felix Gaedke, Ulrike Göbel, Franziska Peters, Maksym Cherevatenko, Joo Hyun Park, Astrid Schauss, Nieves Peltzer, Jens Claus Brüning, Jan-Wilhelm Kornfeld, Alexander Pfeifer, Thomas Langer, Marina Lusic, Sara A. Wickström, Christian Frezza, Aleksandra Trifunovic","doi":"10.1038/s42255-025-01332-8","DOIUrl":null,"url":null,"abstract":"Mitochondria have a crucial role in regulating cellular homeostasis in response to intrinsic and extrinsic cues by changing cellular metabolism to meet these challenges. However, the molecular underpinnings of this regulation and the complete spectrum of these physiological outcomes remain largely unexplored. In this study, we elucidate the mechanisms driving the whitening phenotype in brown adipose tissue (BAT) deficient in the mitochondrial matrix protease CLPP. Here we show that CLPP-deficient BAT shows aberrant accumulation of lipid droplets, which occurs independently of defects in oxygen consumption and fatty acid oxidation. Our results indicate that mitochondrial dysfunction due to CLPP deficiency leads to the build-up of the oncometabolite d-2-hydroxyglutarate (d-2HG), which in turn promotes lipid droplet enlargement. We further demonstrate that d-2HG influences gene expression and decreases nuclear stiffness by modifying epigenetic signatures. We propose that lipid accumulation and altered nuclear stiffness regulated through 2HG are stress responses to mitochondrial dysfunction in BAT. CLPP-deficiency-driven mitochondrial dysfunction in brown adipose tissue leads to the accumulation of d-2-hydroxyglutarate, in turn promoting lipid-droplet enlargement by altering gene expression and epigenetically regulating nuclear stiffness.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 8","pages":"1593-1613"},"PeriodicalIF":20.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01332-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-025-01332-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria have a crucial role in regulating cellular homeostasis in response to intrinsic and extrinsic cues by changing cellular metabolism to meet these challenges. However, the molecular underpinnings of this regulation and the complete spectrum of these physiological outcomes remain largely unexplored. In this study, we elucidate the mechanisms driving the whitening phenotype in brown adipose tissue (BAT) deficient in the mitochondrial matrix protease CLPP. Here we show that CLPP-deficient BAT shows aberrant accumulation of lipid droplets, which occurs independently of defects in oxygen consumption and fatty acid oxidation. Our results indicate that mitochondrial dysfunction due to CLPP deficiency leads to the build-up of the oncometabolite d-2-hydroxyglutarate (d-2HG), which in turn promotes lipid droplet enlargement. We further demonstrate that d-2HG influences gene expression and decreases nuclear stiffness by modifying epigenetic signatures. We propose that lipid accumulation and altered nuclear stiffness regulated through 2HG are stress responses to mitochondrial dysfunction in BAT. CLPP-deficiency-driven mitochondrial dysfunction in brown adipose tissue leads to the accumulation of d-2-hydroxyglutarate, in turn promoting lipid-droplet enlargement by altering gene expression and epigenetically regulating nuclear stiffness.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.