David Ajasin, Stephani Velasquez, Joy Gibson, Eliana Scemes, Antonio Cibelli, David Spray, Eliseo A Eugenin
{"title":"Pannexin-1 channels, extracellular ATP, and purinergic receptors are essential for CCR5/CXCR4 clustering and HIV entry.","authors":"David Ajasin, Stephani Velasquez, Joy Gibson, Eliana Scemes, Antonio Cibelli, David Spray, Eliseo A Eugenin","doi":"10.1515/nipt-2025-0005","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Human Immunodeficiency Virus-1 (HIV) cell entry has been well characterized with the identification of CD4 as the main receptor and CXCR4 and CCR5 as co-receptors for the virus. However, how the virus uses the cell machinery for entry and infection is still a work-in-progress. Previously, we identified that the Pannexin-1 (Panx-1) channel, extracellular ATP, and purinergic receptors axis are essential for HIV entry and replication in macrophages, but the mechanisms were not fully explored.</p><p><strong>Methods: </strong>Electrophysiology, ATP quantifications, confocal, HIV entry and replication experiments were used to determine the role of Panx-1 channels in HIV entry.</p><p><strong>Results: </strong>Here, we identified that HIV or gp120 induces Panx-1 channel opening in association with ATP secretion, purinergic activation, and CCR5/CXCR4/actin clustering to enable HIV entry. Blocking Panx-1 channel opening, ATP secretion, or purinergic signaling prevented co-receptor clustering, HIV entry, and subsequent replication in multiple cell types.</p><p><strong>Conclusion: </strong>We conclude that gp120 binding to the cell induces Panx-1 opening to promote the clustering of CCR5 or CXCR4 to the site of CD4-gp120 contact to aid viral entry.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"4 2","pages":"217-236"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImmune pharmacology and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nipt-2025-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The Human Immunodeficiency Virus-1 (HIV) cell entry has been well characterized with the identification of CD4 as the main receptor and CXCR4 and CCR5 as co-receptors for the virus. However, how the virus uses the cell machinery for entry and infection is still a work-in-progress. Previously, we identified that the Pannexin-1 (Panx-1) channel, extracellular ATP, and purinergic receptors axis are essential for HIV entry and replication in macrophages, but the mechanisms were not fully explored.
Methods: Electrophysiology, ATP quantifications, confocal, HIV entry and replication experiments were used to determine the role of Panx-1 channels in HIV entry.
Results: Here, we identified that HIV or gp120 induces Panx-1 channel opening in association with ATP secretion, purinergic activation, and CCR5/CXCR4/actin clustering to enable HIV entry. Blocking Panx-1 channel opening, ATP secretion, or purinergic signaling prevented co-receptor clustering, HIV entry, and subsequent replication in multiple cell types.
Conclusion: We conclude that gp120 binding to the cell induces Panx-1 opening to promote the clustering of CCR5 or CXCR4 to the site of CD4-gp120 contact to aid viral entry.