VARIANCE AS A PREDICTOR OF HEALTH OUTCOMES: SUBJECT-LEVEL TRAJECTORIES AND VARIABILITY OF SEX HORMONES TO PREDICT BODY FAT CHANGES IN PERI- AND POSTMENOPAUSAL WOMEN.

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2024-06-01 Epub Date: 2024-04-05 DOI:10.1214/23-aoas1852
Irena Chen, Zhenke Wu, Siobán D Harlow, Carrie A Karvonen-Gutierrez, Michelle M Hood, Michael R Elliott
{"title":"VARIANCE AS A PREDICTOR OF HEALTH OUTCOMES: SUBJECT-LEVEL TRAJECTORIES AND VARIABILITY OF SEX HORMONES TO PREDICT BODY FAT CHANGES IN PERI- AND POSTMENOPAUSAL WOMEN.","authors":"Irena Chen, Zhenke Wu, Siobán D Harlow, Carrie A Karvonen-Gutierrez, Michelle M Hood, Michael R Elliott","doi":"10.1214/23-aoas1852","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal biomarker data and cross-sectional outcomes are routinely collected in modern epidemiology studies, often with the goal of informing tailored early intervention decisions. For example, hormones, such as estradiol (E2) and follicle-stimulating hormone (FSH), may predict changes in womens' health during the midlife. Most existing methods focus on constructing predictors from mean marker trajectories. However, subject-level biomarker variability may also provide critical information about disease risks and health outcomes. Current literature does not provide statistical models to investigate such relationships with valid uncertainty quantification. In this paper we develop a fully Bayesian joint model that estimates subject-level means, variances, and covariances of multiple longitudinal biomarkers and uses these as predictors to evaluate their respective associations with a cross-sectional health outcome. Simulations demonstrate excellent recovery of true model parameters. The proposed method provides less biased and more efficient estimates, relative to alternative approaches that either ignore subject-level differences in variances or perform two-stage estimation where estimated marker variances are treated as observed. Empowered by the model, analyses of women's health data reveal, for the first time, that larger variability of E2 was associated with slower increases in waist circumference across the menopausal transition.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1642-1667"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1852","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal biomarker data and cross-sectional outcomes are routinely collected in modern epidemiology studies, often with the goal of informing tailored early intervention decisions. For example, hormones, such as estradiol (E2) and follicle-stimulating hormone (FSH), may predict changes in womens' health during the midlife. Most existing methods focus on constructing predictors from mean marker trajectories. However, subject-level biomarker variability may also provide critical information about disease risks and health outcomes. Current literature does not provide statistical models to investigate such relationships with valid uncertainty quantification. In this paper we develop a fully Bayesian joint model that estimates subject-level means, variances, and covariances of multiple longitudinal biomarkers and uses these as predictors to evaluate their respective associations with a cross-sectional health outcome. Simulations demonstrate excellent recovery of true model parameters. The proposed method provides less biased and more efficient estimates, relative to alternative approaches that either ignore subject-level differences in variances or perform two-stage estimation where estimated marker variances are treated as observed. Empowered by the model, analyses of women's health data reveal, for the first time, that larger variability of E2 was associated with slower increases in waist circumference across the menopausal transition.

方差作为健康结果的预测因子:受试者水平的性激素轨迹和可变性预测围绝经期和绝经后妇女体脂变化
在现代流行病学研究中,定期收集纵向生物标志物数据和横断面结果,通常目的是为量身定制的早期干预决策提供信息。例如,激素,如雌二醇(E2)和卵泡刺激素(FSH),可以预测中年妇女健康状况的变化。大多数现有的方法侧重于从平均标记轨迹构建预测器。然而,受试者水平的生物标志物可变性也可能提供有关疾病风险和健康结果的关键信息。目前的文献没有提供统计模型来研究这种关系与有效的不确定性量化。在本文中,我们开发了一个全贝叶斯联合模型,该模型估计了多个纵向生物标志物的受试者水平均值、方差和协方差,并使用这些作为预测因子来评估它们各自与横断面健康结果的关联。仿真结果表明,该方法能很好地恢复真实模型参数。与忽略受试者水平方差差异或执行两阶段估计(其中估计的标记方差被视为观察到的)的替代方法相比,所提出的方法提供了更少的偏差和更有效的估计。在该模型的支持下,对女性健康数据的分析首次表明,E2的较大变异性与绝经期腰围增长较慢有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信