Gunjan Misri, Ajay B Murakonda, Naava Naslavsky, Steve Caplan
{"title":"CIN85 and CD2AP Are Novel Constituents of Dynamic Tubular Recycling Endosomes That Regulate Recycling Upon Recruitment by MICAL-L1.","authors":"Gunjan Misri, Ajay B Murakonda, Naava Naslavsky, Steve Caplan","doi":"10.1111/tra.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Recycling endosomes are essential for membrane trafficking, retrieving internalized cell surface receptors and lipids to the plasma membrane. In this study, we investigate the dynamics of tubular recycling endosomes (TREs) and their regulation. We demonstrate that TREs are highly dynamic structures that first undergo biogenesis and later fission upon internalization of CD98, a known clathrin-independent cargo. Our findings identify two new constituents and novel regulators of TRE function, CD2AP and CIN85, which are recruited to TRE through interactions with MICAL-L1 via their SH3 domains. Depletion of either CD2AP or CIN85 impairs recycling, demonstrating that these proteins play important roles in TRE function. Our study highlights the importance of coordinated protein interactions in maintaining endosomal function and identifies CD2AP and CIN85 as key regulators of the recycling pathway, potentially through their impact on the actin cytoskeleton. Understanding these mechanisms provides new insights into membrane trafficking and may have implications for diseases where endosomal recycling is disrupted.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"26 7-9","pages":"e70015"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.70015","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recycling endosomes are essential for membrane trafficking, retrieving internalized cell surface receptors and lipids to the plasma membrane. In this study, we investigate the dynamics of tubular recycling endosomes (TREs) and their regulation. We demonstrate that TREs are highly dynamic structures that first undergo biogenesis and later fission upon internalization of CD98, a known clathrin-independent cargo. Our findings identify two new constituents and novel regulators of TRE function, CD2AP and CIN85, which are recruited to TRE through interactions with MICAL-L1 via their SH3 domains. Depletion of either CD2AP or CIN85 impairs recycling, demonstrating that these proteins play important roles in TRE function. Our study highlights the importance of coordinated protein interactions in maintaining endosomal function and identifies CD2AP and CIN85 as key regulators of the recycling pathway, potentially through their impact on the actin cytoskeleton. Understanding these mechanisms provides new insights into membrane trafficking and may have implications for diseases where endosomal recycling is disrupted.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.